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of increase of magnetic field in interstell ar medium
that the interstellar magnetic field will be suf-
ficiently homogeneous in regions of dimensions of
the pulsation L,, which have akinetic energy
density equal to the magnetic energy density of
the medium?-4. Charged particles moving in an
interstellar magnetic field-will go from one homo-
geneous region to another. Because of the turbu-
lent character of the magnetic field, it can be
assumed that the directions of the homogeneous
regions of the magnetic field are distributed
randomly.

We want to examine the dependence of the dif-
fusion coefficient on the particle energy. If the
energy is such that the m ean radius of curvature
of the particle trajectory is much smaller than
L,, then, due to the chaotic structure of the mag-
netic field, the particle will be moving randomly.
For the mean free path we can take the mean
dimension of the homogeneous regions of the
magnetic field. In this energy interval, we can
therefore consider the diffusion coefficient as
being constant and equal to

D z.CLh. (].)

Consider now the case when the particle energy
is such that the mean radius of curvature of the
trajectory of the particle in the magnetic field is
much larger than the dimension of the homogeneous
regions of the magnetic field. The scattering
will be mostly in the forward direction, and we have
first to evaluate the transport mean free path of the
particle in the interstellar magnetized medium. It
is known®'S that the transport mean free path is
the mean distance travelled by the particle after
it has passed through an infinite number of
randomly distributed homogeneous regions of the

magnetic field:
I=1L,1+cosb, +cos 62 +...)

(2

= Lh/(i — COS ek)'

where ek is the scattering angle due to one homo-
geneous region of the magnetic field.

The radius of curvature of the trajectory of a
particle with momentum P in a magnetic field #
is equal to

Ry, = cpleH sin 0, (3

where 0 is the angle between the momentum and the
magnetic field. The mean dimension of a homo-
geneous region of the magnetic field is L; hence,

L2e*H?5in%
Zie ST (4)

az
P c2p?
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and

L
[ = k

1—cos#,

2L,

0

202 p?

[2

L,e*H?sin29 °

0

(5)

but for extreme relativistic energies p ~ E/¢, and

L= FL,e2H2, (6)
therefore, for high energies the dif fusion coef-
ficient will be:

D=~ 052/Lhe2H2. (7)

If one assumes that the dependence of the dif-
fusion coefficient on the energy is monotonic, it
is easy to determine the dependence for intermedi-
ate energies. ltis clear that for some energy
interval in the intermediate region, this dependence
may be considered as linear. Thisis to some ex-
tent a compl ementary argument for our assumption
of linear dependence for the diffusion coefficient.
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Determination of the Dielectric Constant of
Superconductors

M. IA. AzBEL’
( Submitted to JETP editor July 15, 1955)
J. Exper. Theoret. Phys. USSR 29, 705-707
(November, 1955)

RRIKOSOV ! has obtained formulas for the de-

‘termination of the dielectric constant of
superconductors, taking into account its abnormally
large value ( see, for example, Ginzburg“). How-
ever, the question of the existence of an anoma-
lously large polari zability in sup erconductors has
not yet received fina settlement, since the cor-
responding calculations, carried out on the re-
sults of the measurements by Galkin3 at a fre-

quency of w =28 x 10! gec!, have not indi-
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cated any change in the sxgn of the dielectric
constant e =¢ — (¢ % «?82) (8, is the penetra-

tion depth of the static magnetxc field in the
superconductor). Galkin and Kaganov* have
attributed this to the weak dependence of 5 on
the frequency

It is shown in the present work that the results
of Galkin’s experiments® can be understood if we
tak e into account the anisotropy of superconduc-
tors. As is seen below, consideration of the
anisotropy meakes an essential chamnge in the
expression for the surface impedance of super
conductors.

In this investigation we consider the surface
impedance of the superconducting metal for an
arbitrary dispersion law for the normal electrons
e=¢€(p) (¢ and p are their energy and quasi-
momentum). The complete set of equations in
this case has the form

w2 frtied .
E (z)+_—-—tl: =T~J (0= x%,9) ()
(€unbr = Cagbx T+ ":ayEy + g..E)0 (2)
. o
Jz= Z;f_l DZ’
s iw 2e (3
3 = oy S"f dpdp,dp,; )
af+ of gf eEe tmt+f ______0; (4)
P
= - (wd), 5
Fir = € (az)b_ ,kd:‘o(;Tk; ®
7= S Y (6
e(p)=< e(p)—c
f =(1—q)fo+4qf
z2=0 z=0 (7
v,>0 —v,

Here ¢, is the dielectric constant tensor, J,, the
tensor of the penetration depth of a static mag-
netic field in a superconductor, 7 the rel axation
time of the normal electrons at a given tempera
ture, v the velocity of the electron, w the fre-
quency of the el ectomagnetic field, €  isthe
limiting energy, fthe distribution function of the
dectrons, E the variabl e electric field intensity,
j is the current density, g the reflection coef-
ficient of the electrons from the surface; the axis
Oz coincides with the inwardly drawn nomal to
the surface of the metal.

We linearize the kinetic equation (4) by setting

of T .
f=fomewt g O = ey

[fo(c) is the equilibrium Femi dlsmbuuon func-
tion]. Taking into account that D, —e WEy ad

¢ ’ ds
| was = Zrh) o7 = mihsel, El(2) / e & =,
e(p)==¢o
we get from Egs. (1)-(7):
2g
(1—3, 2 E2) (8)

B %12 ! | Kin(z—v) By (0 du+ | Quiz—wEpwdu

— —o

— U= (=1)’Bq] | P (121 + ) By (w) du-
0

+(1~l—q)§ Rip(l2] +u)E;(u)du};
0

— [1 (i=k)
ik 0 (i k),

where
4 n.n ©
",h(‘*’)=§ S = kexp{‘!*nl}d&
n,>0 n, e "z
4
Q, ), (w)=sign 5 \ n;ay exp {__ | i"nl }a’S ,
ny>0 "z e’z

162=3(2r % )3 c¥/ 4Twe? S;
. ds
G =7 r? |3 l sl=vT.

In Eq. (8) the field function remains even in the
region outside the met al: E(-z) = E( 2).
Transferring from the equations for the function
Ei(z) to the equations for its Fourier transform, we
find that in the zeroth approximation, for
8/|1*| <1, Eq. (8) can be written in the form:

E @+ (el /e Eg () =(5i/187) ©
X J K.uﬁ(z—p)Eﬁ(p)du(a,B=x,y),



where
(10)
2 2
- 1 wz,B 1- (o /(dgﬁ) (62'8/622)
€“ﬁ=(°‘ﬁ+—2_ls°< 2 . ;
cu'r(ezz/ezz)+4i
2m m/2 —
It v
s L tg 64—
S_«=: de N“d(P 4 v ( CP, 0)
v v
_ 0 0
v 1 r
- ” d0,7=?~§vds,
vle, 3

v=(vsinecoscp,vsinasincp,vcose);

cosp(a=x) 11

- sin q)( oc=y).
The integration in Eq. (11) is carried out over the
Fermi surface e (p) = € .

In the simplest case of perfect reflection(g=1)
of the electrons from the metal surface the tensor
of surface impedance is

dmiw JE_(0)

c? aE’é(O)

Z“‘B =-
tdt
X
0

(12

"2 (1559

3 . 2 eff 2 242/3
t 5¢/3+ 3"“«6"(‘” bu /e“Y (16%)

m
8w M‘ezNﬂdCP
k_“ﬁ‘—"— —s—

[K(g, 0) is the Gaussian curve of the Fermi
surface |.

It is seen from Eq. (10) that the effective di-
electric constant is a complex quantity. Hence,
it is not sufficient to know X and R for the
measurement of €0 and the determination of the
sign of €. We note that the direction of the
principal axes of the surface impedance tensor
z-,@ depends on the fre enC{.

hese results | Egs. HO)-( 2) | apply not only
to single crystals but also to polycrystals with
sufficiently large crystal dimensions.

In conclusion, I consider it my pleasant duty to
express my thanks to I. M. Lifshitz for his dis-
cussions of the results of the research.

1 A, A. Abrikosov, Dokl. Akad. Nauk SSSR 86, 43
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2v.L. Ginzburg, Uspekhi Fiz. Nauk 42, 169, 333
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Translated by R, T. Beyer
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The Role of Spin in the Study of the Radiating
Electron

A. N. MATVEEV
Moscow State University
(Submitted to JETP editor January 24, 1955)
J. Exper. Theoret. Phys. USSR 29, 700-701
(February, 1955)

lN his recently published paper, Nelipa®! claims

‘that the ratio of the magnitude of the integrated
radiation of the electron to the magnitude of the
integrated radiation of a spinless particle is equal
to 1 + (me2/ E)2. Our calculations?, which
take into account quantum corrections of all
orders, show that this is not so.

We obtained the following formulas, which may
be applied to the radiation of all the spectrum, for
arbitrary energies of the electron or of a spinless
particle.

AW ) . _ce (ﬂ“"
=V 3 ’1) (1a)
1" ( 1 EZ E 1
X &’*[ ) K‘/«""""*r:g"'/s(m?)];
€ 1
T
O _ce (me\ ¢ ;
aw® = < (Z2) gz ES 1 Ky, () dox;
=T
g_he ._3 n (Ew (1b)
- E E_TRI/.L‘ —”I_L'z-
For s =0 these formul as give the classical
formula for the differential spectrum:
3V3cer/ E ¢ ¢
y
=2 =3 c(EY
y w, s m"_—_.?.—? (W}’

obtained by Ivanenko and Sokolov?, and later by
Schwinger*. If one considers only quantities of
first order in A ( first quantum correction), one
obtains the quantum-theoretical formulas for the
differential spectrum obtained by Sokolov and
Ternov® and Schwinger” which are exact to the
first order in 4.

Formulas for total radiation energy, which are
exact for arbitrary energies of the radiating
particles, have the following form ( see also
reference 7 ):





