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of increase of magnetic field in interstellar medium 
that the interstellar magnetic field will be suf-· 
ficiently homogeneous in regions of dimensions of 
the pulsation Lk, which have a kinetic energy 
density equal to the magnetic energy density of 
the medium 2• 4 • Charged particles moving in an 
interstellar magnetic fi eld·.will go from one homo­
geneous region to another: Because of the turbu­
lent character of the magnetic field, it can be 
assumed that the directions of the homogeneous 
regions of the magnetic field are distributed 
randomly. 

We want to exanine the dependence of the dif­
fusion coefficient on the particle energy. If the 
energy is such that the mean radius of curvature 
of the particle trajectory is much smaller than 
Lk' then, due to the chaotic structure of the mag­
netic field, the particle will he moving randomly. 
For the mean free path we can take the mean 
dimension of the homogeneous regions of the 
magnetic field. In this energy interval, we can 
therefore consider the diffusion coefficient as 
being constant and equal to 

D z.cLh· (l) 

Consider now the case when the particle energy 
is such that the mean radius of curvature of the 
trajectory of the particle in the magnetic field is 
much larger than the dimension of the homogeneous 
regions of the magnetic field. The scattering 
will be mostly in the forward direction, and we have 
first to evaluate the transport mean free p och of the 
particle in the interstellar magnetized medium. It 
is known 5 •6 that the trmsport mean free path is 
the mean distmce travelled by the particle after 
it has passed through an infinite number of 
randoml v distributed homogeneous regions of the 
magnetic field: 

l = Lk(i +cos 6k +cos 6~ + ... ) 

= Lkj(i- cos 6k), (2) 

where ek is the scattering angle due to one homo­
geneous region of the magnetic field. 

The radius of curvature of the trajectory of a 
particle with momentum Pin a magnetic field 11 
is equal to 

Rh = cpjeH sin 6, (3) 

where e is the angle between the momentum and the 
magnetic field. The mew. dimension of a homo­
geneous region of the magnetic field is Lk; hence, 

(4) 

and 

(5) 

hut for extreme relativistic energies p ""E/c, and 

l = E2jLke2H2 , (6) 

therefore, for high energies the diffusion coef­
ficient will be: 

(7) 

If one assum·es that the dependence of the dif­
fusion coefficient on the energy is monotonic, it 
is easy to determine the dependence for intermedi­
ate energies. It is clear that for some energy 
interval in the intermediate region, this dependence 
may be considered as linear. This is to some ex­
tent a complementary argument for our assumption 
of linear dependence for the diffusion coefficient. 
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ARRIKOSOV 1 has obtained formulas for the de-
termination of the dielectric constant of 

supercO'Il.ductors, taking into account its ahnonnally 
large value (see, for example, Ginzburg~. How­
ever, the question of the existence of an anoma­
lously large polarizability in superoonductors has 
not yet received final settlement, since the cor­
responding calculations, carried out on there­
sults of the measurements by Galkin 3 at a fre-
<pen cy of cu = 2.8 x lO 11 sec· 1, have not i11di-
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cated any change in the sign of the dielectric 
( 2; 2 2 constant l = E0 - c Cz.l 80 ) ( o0 is the penetra-

tion depth of the static magnetic field in the 
superconductor). Galkin and Kaganov 4 have 
attributed this to the weak dependence of 80 on 
the frequency. 

It is shown in the present work that the results 
of Calkin's experiments 3 can be understood if we 
tace into account the anisotropy of superconduc­
tors. As is seen below, consideration of the 
anisotropy makes an essential change in the 
expression for the surface impedance of super­
conductors. 

In this investigation we consider the surface 
impedance of the superconducting metal for an 
arbitrary dispersion law for the normal electrons 
l = E(p) (land p are their mergy and quasi­
momentum). The complete set of equations in 
this. c.asa has the fonn 

" w2e:"'" 47tiw · ) 
E"' (Z) + c2 l::k = 7 J"' (oc =X, y ; ( 1) 

(2) 

(3) 

(4) 

(5) 

(6) 

/1 =(1-q)fo+qfl 
z=O z=O 
V 2 >0 -V2 

(7) 

Here ltk is the dielectric constant tensor, oik the 
tensor of the penetration depth of a static mag­
netic field in a superconductor, 'T the relaxation 
time of the normal electrons at a given tempera­
ture, v the velocity of the electron, cu the fre­
quency of the electromagnetic field, £0 is the 
limiting energy, {the distribution function of the 
electrons, E the variable electric field intensity, 
j is the current density, q the reflection coef­
ficient of the electrons from the surface; the axis 
Oz coincides with the inwardly drawn normal to 
the surface of the metal. 

We linearize the kinetic equation (4) by setting 
() ~ . t 

f = fo- e't'* lJe:o e'., lji; 
't' 

't'* = 1 + iwt; 

[f0(E) is the equilibrium Fenni distribution func­
tion]. Taking into account that Di =l~kEk and 

\ ~liS= (2~n ~3 p' = 7t2ftse:~"E~(z) / e2-r ~ d; ' 
~ 2e 'r e(p)=<o 

we get from Eqs. Cl)-(7): 

w2e:.l< 
(1- 3;3) E~(z) + 7 E"(z) (8) 

= ~2 f I K;n (z-fL) Eh (p.) dfL + I Q,h (z- fL) E~(fL) dfL 
l-oo -oo 

where 

co 

- [1- (-1)11k3q] ~ P,k (I z I+ t.L) Ek (fL) dfL · 
0 

+ (1 + q) r R;~t( I z I+ fL) E~(fL) dfL}; 
0 

3 - {1 (i = k) 
ik- 0 (i=/=k), 

K;h (w) = ~ ~ '!~''" exp {- 1 :,1
1 }ds; 

nz;;;. o z e z 

Qik (w)=sign w ~ ~ n;a~t exp {-' ~nl }ds; 
nz;;;. o nz e z 

J 
n >O z-

n.ak f Cz.l} T exp ---liS; 
z e* n 

2 3 0 I 2 IdS ak = TT 1r lzk e l --;;; z = v 'T. 

In Eq. (8) the field function remains even in the 
region outside the metal: E( -z) = E( z). 

Transferring from the equations for the function 
Ei ( z) to the equations for its Fourier transform, we 
find that in the zeroth approximation, for 
o/ I ~ * I « 1, Eq. (8) can be written in the fonn: 

E~ (z) + ( Cz.l 2 E!~ / c 2) E{3 (z) = ( 3ill 82 ) (9) 

00 

X f K.oc{J { Z - /l) E {3 ( p.) d p. (a., {3 = X, y), 

...00 
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where 

w-r<f /f0 )+4i 

s.-: f~ r N.d~ r ,:'{(:, 8) 

v 0 0 

-·(~~i) }dO; v~; I•dS; 
v = ( v sin e cos cp' v sin e sin cp' v cos e); 

N ={cos cp (ex.= x) (ll) 

oc sin cp( cx.=y). 

The integration in Eq. (ll) is carried out over the 
Fenni sud ace f ( p ) = f • 

0 
In the simplest case of perfect reflection (q= I) 

:Jf the electrons from the metal sudace the tensor 
of surface impedance is 

. 47Tiw a£"'(0) 8iw --
-- --( s:-2)~3 zoc{3:,- c2 a£~(0) c2 lu 

(12) 

X J tdt 

t 30.ocf3+ 3ik<{3-(w 2f~~ /c 2 ) (lo2 )V3 

1T 0 
8TT r M"'N {3d cp 

k<{J = s J 1T 

o K ~· 2) 
[K(¢, 0) is the Gaussian curve of the Fermi 
surface]. 

It is seen from Eq. (IO) that the effective di­
electric constant is a complex quantity. Pence, 
it is not sufficient to know X and R for the 
measurement of fo and the determination of the 
sign of f. We note that the direction of the 
principal axes of the sudace impedance tensor 
z..a depends on the freqt!encf. 

'These results [Eqs. tlO)-( 2)] apply not only 
to sina;le crystals but also to polycrystals with 
sufficiently large crystal dimensions. 

In conclusion, I consider it my pleasant duty to 
e.xpress my thanks to I. M. Lifshitz for his dis­
cussions of the results of the research. 
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} N his recently published paper, Nelipa 1 claims 
'that the ratio of the magnitude of the integrated 

radiation of the electron to the magnitude of the 
integrated radiation of a spinless particle is equal 
to I +<mc 2 / E) 2 • Ourcalculations 2 , which 
take into account quantum corrections of all 
orders, show that this is not so. 

We obtained the following formulas, which may 
be applied to the radiation of all the spectrum, for 
arbitrary energies of the electron or of a spinless 
particle. 

(I a) 

X M [ J' K.,, (x)dx ,~ t '\ K.,, (, <_ ;{-ll 
1-~T 

co 

~ K,,1, (x) dx; 

!; 1 
1-~;T 

h(Jl y 3 h ( E ., 2 ( Ib) 
~ = 7 ' '- = 2 Ru.c mc2 } • 

For h = 0 these formulas give the classical 
formula for the differential spectrum: 

3 l'3 ce2 ( E )4 f 
dW = l;7t R 2 mc2 ydy ~ K.1, (x) dx, (2) 

y 

obtained by lvanenko and Sokolov 3 , and later by 
Schwinger 4 • If one considers only quantities of 
first order in h (first quantum correction), one 
obtains the quantum-theoretical formulas fm the 
differential spectrum obtained by Sokolov and 
Temovs and Schwinge r 6 which are exact to the 

first order in h. 
Formulas for total radiation energy, which are 

exact for arbitrary energies of the radiating 
particles, have the following form (see also 
reference 7): 




