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It is shown that the singularity at the origin in the potential of the electromagnetic inter­
action of two electrons (or of an electron with a positron), taken in any, arbitrarily high, 
approximation of perturbation theory, involving the nth power of the charge, is not of higher 
order than ( 1/r) ln(n-2)/2r. 

JT is known that the potential of the electromag-
netic interaction* of two spinor particles in the 

second approximation of perturbation theory he­
haves like l/r ( r is the three-dimensional distance 
between the particles) at the origin, which 
theoretically allows the possibility of hound 
stationary states of a system of two oppositely 
charged particles, as actually observed in nature 
(for example, the hydrogen atom, and also the 
recently discovered positronium ). The question 
naturally arises as to the character of the singul­
arity at the origin in the potential in higher ap­
proximations of the theory. 

Calculations with nonrelativistic quantum elec­
trodynamics give a strengthening of the singularity 
in the potential (to l/r 3 ) .in the fourth approxima­
tion. Such a strong singularity of the pot~ntial is 
brought about, for example, by the term 
e 2[A~ (x 1) +A~ (x2)], which appears ori the intro-

duction of the electromagnetic field into the 
Schroedinger equation for two particles ( x 1 and x 2 
are the space coordinates of the particles). Cal­
culations with relativistic non quantum theory 1 

give an analogous strengthening (to l I r3 ) of the 
singularity of the potential in fourth approximation. 

With regard to relativistic quantum electro­
dynamics, here, because of the well-known funda­
mental difficulties with infinities, up until recent 
years it has not appea-ed possible, without 
violating the consistency of the theory, to obtain 
the potential in an approximation higher than the 
first nonvanishing one (i.e., the second), and the 
question of the singularity of the potential in 
higher approximations has remained open. At the 
present time, owing to the appearance of consistent 
methods for the removal of infinities, relativistic 
quantum electrodynamics can to a certain extent 
he regarded as a completed, consistent theory, 

* Here and in what follows we shall have in mind the 
ordinary electrodynamics with the interaction part of 
the Hamiltonian not containing derivatives of the field 
operators. 

and the answer to this question would he of great 
interest. It it were to turn out that also in the 
relativistic quantum electrodynamics the singularity 
of the potential at the origin were essentially 
strengthened (becoming stronger than l/r2 ) in 
higher approximation, as occurs in the nonrela­
tivistic and nonquantum approximations, this would 
mean a new difficulty in principle, as the possi­
bility of hound stationary states, which follows 
from the second approximation, would become 
fictitious--the theory would obviously he in contra­
diction with observed facts. 

The purpose of the present paper is to show that 
the interaction potential of two spinor particles 
(for concreteness we shall call them electrons ), 
calculated in relativistic quantum electrodynamics 
with known methods of removing infinities, has a 
singularity at the origin not higher than l/r1H 

(with fan arbitrarily small positive number), in 
any arbitrarily high (hut of ~ourse finite) order of 
perturbation theory. . 

In this paper "natural" units are used (-h = c = l). 
In addition, in applying the summation convention, 
the fourth term of a sum over a "dummy" index 
is taken with the minus sign. 

It is we II known that the singularity at the 
ori~in in the interaction potential of two particles 
can he determined from the asymptotic behavior of 
the S-matrix for the scattering of the particles at 
high momenta. For this prupose it suffices to 
take into account in the calculation of the S-
matrix only those of its elements that correspond 
to Feynman diagrams that form an irreducible 
representation (see Be the and Salpeter2 ). Besides 
this, the S-matrix must he calculated without use 
of the law of conservation of energy for the 
initial and final states. 

The essence of the proof consists of showing 
that in passing from the nth approximation, which 
is assumed reduced to finite form, to the next 
[obviously, the (n + 2)nd], after the removal of 
all infinities in the (n + 2 )nd approximation, the 
asymptotic approach to zero of the S-matrix with 
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increasing momenta is weakened by a factor not 
stronger than logarithmic. 

If we denote the initial momenta of the elec­
trons by p and q , and the final momenta by p,: 

p. p. r 

and q~, then the element of the S-matrix in the first 

nonvanishing (the second) approximation, cor­
responding (apart from "exchange") to the single 
diagram in this approximation 

is given by 

(27t)4ie2 

S2=- 2 (l) 

Attention must be drawn here to the following 
circumstance. It is well known that besides the 
divergences of virtual particles at high momenta, 
removable by the relativistically invariant method 
of renormalization and regularization, the S-matrix 
of electrodynamics also contains integrals over 
the momenta l of virtual photons that diverge at 
zero ( th•e "inCrared catastrophe"). This diverg­
ence can be removed in two well-known ways: 
l) "cutting off" near zero in the l-space, or 2) 
assigning to the photon a certain finite rest mass*. 
It is true that, even if we omit consideration of 
the ambiguity of these methods, they cannot he 

* It must be noted that the possibility of removing 
the infrared catatrophe by the introduction of real 
photons is excluded by the very statement of our prob­

lem. 

Here tl.pp. = p~- Pp.; 'I'P, 'l'q and so on denote the 

amplitudes of plane waves with the indicated 
mo~enta; w+ = 'I'* y 4' where the sign * denotes 
the complex conjugate and transposed quantity. It 
follows from (l) that for tl. p P. --> oo, S 2 behaves like 

1/(tl. p )2, which corresponds to a potential with 
l/ /1; 1 . h .. a r smgu anty at t e ongm. 
We shall show that the passage from any arbi­

trary approximation to the following one can be 
accomplished either by the "connecting" of any 
two electron lines (solid lines in the diagram), 
which may in particular be coincident lines, by a 
photon (dotted) line, or else by the "insertion" in 
any photon line of a closed electron loop (con­
sisting of two electron lines). In this way one can 
immediately obtain from diagram (/) all the diagrams 
of the fourth approximation, of which only the 
first is reducible: 

(II) 

regarded as fully consistent in view of the fact 
that the first method destroys the relativistic 
invariance of the S-matrix and the second destroys 
the gauge invariance. The fact is, however, that 
the difficulty with the infrared catastrophe is not 
one of principle and, as is well known, is brought 
about by the illegitimacy of the expansion of the 
S-matrix in the series of perturbation theory. The 
exactly calculated S-matrix is free from this diffi­
culty. 

In what follows it will be assumed that all oc­
curring integrals over virtual momenta have, if 
divergent at zero, been brought to finite form by 
one of the known methods; we shall suppose, how­
ever, that no inconsistency in principle is thus 
introduced. 

We consider the following types of passages from 
the nth approximation to the ( n + 2 )nd, shown in 
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diagrams {1/l)-(V/1) [or to the ( n + 4 )th, in case 

.. : 
~-----· .. ·· 

. __ <! __ .... 

.. ·· 

.. ·· 
I 
I __,,........ __ ,... .. · 

.... ~ 

... ·y-· ... ---......·· 
.· ? 

The diagonally directed series of dots represent 
certain entirely arbitrary parts of the diagram. In 
case (VI) it is assumed that l) if the ~and TJ 
lines belong to one succession of electron lines, 
then between the ends of the line l (along the 
succession of electron lines) there are at least 
two points, and 2) if one (or both ) of the lines 
~and TJ belongs to a closed loop of electron lines, 
then in the left-hand part of (VI) this loop must 
consist of not fewer than four (electron)lines. 

The necessity of special consideration of cases 
(VII) and (VIII), passages from closed loops of two 
electron lines di~ectly to loops of four lines, is 
occasioned by our wish to exclude from considera­
tion diagrams vrith loops of three electron lines, 
because of the unremovable infinities appearing in 
the element of the S-matrix coiTesponding to each 
such diagram. The exclusion of these cases is, of 
course, permissible, as by Furry's theorem 3 the 
sum of the elements of the S-matrix corresponding 
to ali such diagrams is equal to zero. 

It is obvious that by means of alterations {1/1)­
(V[ll) one can obtain from the collection of 
diagrams of any arbitrary approximation all possi­
ble diagrams (with nonvanishing total contribu­
tions) of any higher approximation. 

We note that ~11' TJ 11 and ( 11 are algebraic sums of 

(VII/)]. 

l eo ... ..... --- ---· (III) 

( .. 
I 
I ..... ·-er---.,-__,.~-..... ,--··iF-J 

\ I 
' ...... _..,,.-·, ..... _,''t 

some number (which may,inparticular,be zero) of 
virtual momenta lll' over which integration is to be 

performed, and one of the terms -t'lpll' L'lp11 - Pw 

L'lp11 - qll' p11 , q11 (or of virtual momenta only), i.e., 

symbolically 

~==e(p, t), 'fl=='fl(p, t), C==C(p, t). 

In the passage from the nth approximation, as­
sumed reduced to finite form, to the (n + 2)nd, or 
in case (VIII) to the ( n + 4 )th, there occurs in the 
integrand of the expression for the S-matrix a re­
placement of a factor Mi ( ~ll) * by another: 

M/ ~ll)--> M; ( ~11 ); the latter is in general infin­

ite, but reducible to finite form: M( ( ~ 11 )-> Mt<~11). 
Comparison of these two factors M. and M': makes 

' ' 
possible a decision about the change of asymptotic 
behavior of the S-matrix with increasing order of 
approximation. First of all we can convince our­
selves that in all of cases (///)-(VII) the asymp­
totic behavior of M': (~ ) for ~~~--> oo can differ 

' 11 r 
from that of Mi ( ~ll) by nothing stronger than a 

*For case (VI} Mi(~W TJ11 ), and for case (VJJI) 

Mi ( ~ p! TJ Jl' ( 11 ), respectively. 



SINGULARITY OF THE ELECTROMAGNETIC POTENTIAL 557 

i 
I .. 

.f~ 
,-J o, fc 

I 
j 

logarithmic factor, and in case (VIII) by nothing 
stronger than its square, i.e., 

"""' 

(2) 

where for ,;11 .... oo, A i ( ,;11 ) approaches infinity in 

cases (1[[)-(Vll) no more strongly than ln~ , and in 
case (Vll/) not more strongly than ln 2 ,;~. Onci-. 
dentally, as is easily seen, there follows from this 
the full renormalizability of electrodynamics.) 

We present as an example the factors M 1 and 
M{ for case (Ill): 

• e2 ~2" ) 
M1 = Op.v; M1 = 4(21t)2 (~p.~v- 0 p.v (3) 

(4) 

.. ·· 
i 
I 

e ~ 

(, 

.· 
I 
I 

In deriving the asymptotic behavior of the fac­

tors Mt in the more complicated cases (VI) and 
(V[[l) it is necessary to use the general formulas 
(for arbitrary integers l, n, k, m ): 

1 

-a 1 a = (l- 1)! \ dx1 ••• 
1"' l ~ 

(5) 

0 

·'"l-2 

X ~ dXt-1 • [a1Xt-1 + a2 (Xl-2- Xt-1) + ... 
0 

~ (6) 
(en) 

n 

= 4-n ~ d 4l (lp.)2nf(l2)· };.~o(l.,. 
(en) 

[for half-integral n integral (6) is equal to zero), 
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(7) 

7t2i [ 1 
- A m-h.-2 (m - k- 2) (m- k - 1.) 

- c~ ____ 1,..,.--;-(-----,k'""'"> 
(m-k-1) m-

(m-k-2:;?1). 

+···+(-I)" (m-2~(m-1)]. 

The summation in (6) is taken over all permuta­
tions of the indices p., 1;, •.. , ex., v. Equation 
(6) can be proved from general considerations of 
relativistic invariance. 

Furthermore, on the basis of (2) it is not diffi­
cult to Prove the following assertion: if the integral 

Sn = ~ j [l, p, ~ (p, l)] M [~ (p, /)] for p,.-----? oo 
(l) 

approaches zero (just this approach to zero is 
essential) like some function / 11 (p11 ), then 

S = ~ j[l, p, ~ (p, l)] M" [~ (p, l)] for pfl- -:,. oo 
n+2 (I) 
n+4 

will approach zero in cases (///)-(VII) no more 
weakly than f 11 ( p /1) ln(p /1 ) 2 and in case ( VIIJ) no 

more weakly than J 11 ( p /1) ln 2(p /1 ) 2 • In other words, 

in the passage from the nth approximation to the 
( n + 2 )nd the asymptotic approach to zero of the 
scattering S-matrix for p f!.-+ oo is weakened by noth­
ing stronger than a logarithmic factor; and this 
means that the singularity at the origin in the 
(electromagnetic ) interaction potential of two 
electrons, and consequently, of the sys tern elec-

tron-positron, in any arbitrarily high nth (in 
powers of the charge ) approximation of perturba­
tion theory cannot be stronger than* 

( l / r) ln<n-2)/2"'. 

Furthermore, it is not hard to see that in non­
relativistic approximation for p /1-+ oo the main 

term of the S-matrix in an arbitrary approximation 
will be, generally speaking, of the nature of a 
constant, which corresponds to a potential with a 
singularity of the form r- 3 • But this need not ap­
pear strange, as a consideration of the interaction 
potential at the origin (which is equivalent to a 
consideration of the scattering S -matrix at large 
momenta) in the nonrelativistic approximation 
(i.e., in the approximation of small momenta) is 
internally self-contradictory. 

In conclusion, the writer expresses his grati­
tude to M. A. Markov for suggesting the problem 
and for his aid in the work. 

* This result of course does not mean that the 
asymptotic behavior of the sum of the whole infinite 
series of perturbation theory wi 11 differ from 1/r by 
only a (finite) power of the logarithm of r. A discussion 
of the question arising in this connection, and also of 
the question in general of the convergence of the 
whole series of perturbation theory, which has given 
rise to doubts, particularly for large momenta (i.e., for 
small r ), is beyond the scope of this paper. 
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