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This work considers the radiation of electromagnetic waves by a charge moving in an 
anisotropic ferrite with a velocity greater than the phase velocity of light. Such radiation 
differs from that occurring in the case of au anisotropic dielectric, both with respect to the 
intensity distribution in the generatrices of the cones and with respect to the energy of the 
radiation. 

SOME years a~~:o Ginzburg 1 considered the 
:question of the field and the radiated energy 

.. + 2 v-4 ( ) -ik~x(e) 
QAi CJJAiQAi = ne vaAi e , 

provifled the conditions 

(aAiaAi) = 1; (aAikA) = 0; 

(aAiaAj) = 0; (hAibAj) = 0. 
are fulfilled. The indices i and j take on the 
values l and 2 corresponding to the different 
nolarizations. In the last two equations of (5) 

{4) 

(5) of an electron in an anisotropic dielectric (see also 
the works of Kolomenskii 2 •3 and Kaganov 4 ). As 
compared with the case of an anisotropic di­
electric, the Cerenkov effect in the case of an 
anisotropic magnetic material possesses certain 
special effects, the consideration of which will, 
V:e believe, prove interesting. Such consideration 
might even be considered essential in connection 
with the possible use of the Cerenkov effect in 
isotropic. and anisotropic ferrites for the generation 
of microwaves. The method used here for the 
investigation of the Cerenkov radiation in an_iso­
tropic ferrites is also ~plicable to the solution 

i =I= j. Fere a' . is the normalized electric field 
1\Z ' 

of other electrodynamic problems in ferrites. 
In the present article we also derive formulas 

for the Cerenkov effect in an anisotropic dielectric 
which are more general than those which have 
previously been known. 

1. THE HAMILTONIAN METHOD IN THE ELECTRO­
DYNAMICS OF AN ANISOTROPIC FERRITE 

In order to solve the problem under consideration 
we shall use the Hamiltonian method in a manner 
similar to that in which Ginzburg used it in the 
solution of the problem of the C~renkov radiation 
in an anisotropic dielectric l-S. 

We shall assume that 

D = sE; B.~= P.xHx, 

By= p.yHy, Bz = p.zHz. 
(l) 

We shall set the conductivity of the medium equal 
to zero. The extent to which this approximation 
is justified for ferrites, which are semi conductors, 
is well known. Using the additional condition 

divA= 0, (2) 
introduced by Ginzbur?, 6 , and resolving the vector 
potential A into a Fourier series 

A (x, t) = 2j Qu (t) AAi (x), (3) 
A, i _ 11- ik x 

AAi - 4nca:~.ie A , 

we obtain, by a method analogous to that used in 
Ref. 5, 
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intensity vector of the polarization wave of type 
i; a,. is the electric induction vector; h,. is the 

1\ t ~ 1\. t 

magnetic field vector ; b,\ i is the magnetic 
induction vector. 

Conditions (5) differ from the corresponding 
conditions in ~ ef. 5, the physical meaning of 
which does not require explanation. 

The method considffed can be used for the 
solution of various electrodynamic problems. For 
exan;ple, we may consider the radiation from an 
oscillator in an .anisotropic ferroelectric. 

2. CEnENKOV RADIATION IN A UNIAXIAL 
FERRITE CRYSTAL 

We restrict ourselves in the present work to 
uniaxial crystals. . 

z 

z' 

The formula for the radiation energy of the 
waves with type i polarization has the form*: 
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Hi 
rad = 

where ( aAi )v is the projection of the normalized 

electric field intensity vector in the direction of 
the forward motion of the electron; nAi is the 

index of refraction for waves with type i polariza­
tion; cp is the azimuthal angle; ;& is the angle he­
tween the normal to the wave front and the velocity 
of the charged particle. In formula (~).all the mag­
nitudes are taken for & = &0 ,where &0 1s the angle 

between kA and v for the radiated waves. It is 
found from the usual condition for the Cerenkov 
radiation, ( kA v) = w Ai' and the integration is 

carried out over the region where this condition is 
fulfilled. 

For convenience in what is to follow, we intro­
duce two systems of coordinates. We choose our 
basic system, that in which we shall write our 
final formulas, such that the z axis coincides with 
the direction of motion of the electron. We call it 
system 2. We will let the z' axis of the 
auxiliary coordinate system 2 'he directed along 
the optic axis of the uniaxial crystal. The yz and 
y 'z 'surfaces of these two systems coincide, as 
do the x and x' axes. In other words system 2 'is 
obtained by rotating system 2, like an hour hand 
on a clock, by an angle x. about the x axis, where 
x. is the angle between the crystal axis and the 
direction of motion of the electron. The equations 
for the transformation of coordinates have the form 

~~ = x; y1 = y cos x + z sin x; Z 1 (7) 

= - y sin x + z cos x,. · 

The transformation equations for the trigono­
metric functions which will be needed below may 
be found from (7). They are 

cos2 &1 = (cos & cos x- sin & sin cp sin x)2 ; (8) 

* See Ref. 3. Equation (6) is valid for_ any type of 
anisotropy, since in its derivation Eq. (4), which is 
derived by means of a corresponding choice of condi­
tions impose:l on aAi, is used. 

Equation (6) does not take into account the optical 
activity of the medium. We note that we must separate 
the integral sign from the modulus of the expression 
under the integral. 

(9) 

cos2 cp s in2 -3-
---~~0h~~--~~----~--~~~ cos2 cp sin2 -3- +(sin cp sin -3- cos x +cos -3- sin x)2 · 

We shall suppose that the dielectric constant is 
isotropic and differmt from unity. In this case the 
equations for the indices of refraction for the 
ordinary (o} and extraordinary (e} waves will he, 
respectively, as follows: 

n~ =floE; (10) 

where flx'= fly'= f1 0 and f1 z'= fleo 

The projections of the normalized electric field 
vectors along v can be found from conditions (5): 

E (ao); =(cos &1 sin cp1 sin x- sin &1 cos x)2 ; (ll) 

_, ( )2 • 2 2 I - ae v =Sin X COS~ 0 

The conditions for radiation have the form 

n~~2 cos2& = 1; n;~2 cos2& = 1, (12) 

~2 = v2;c2 0 

where {3 2 = v 2 lc 2 • 
In the isotropic case Eqo (6) gives 

e2vt ~ ( 1 ) H- =-2- p. 1-~ wdw, 
r ad C f' E:[L 

(13) 

i.e., the result obtained by Sitenko* 7 
0 For {1=1 we 

have the well-known formula of Frank and Tamm 10 

We note that in (16), and also in the formulas de­
rived below for the radiation from a charge moving 
faster than light in anisotropic media, f1 enters as 
a factor, and hence the index of refraction of the 
radiated energy is f1 times as great as it is in the 
case of nonmagnetic media. Unfortunately, in the 
centimeter region in the known ferrites f1 < 2 and 
the gain is small. However, the possibility of 
obtaining larger values of f1 is not excluded, and 
then the use of ferrites for the generation of radio 
waves would he preferable to the use of di­
electrics 11 • 

In what follows we shall designate the energy 

* Equation (13) for the intensity of Cerenkov radia­
tion in an isotropic magnetic material was also ob­
tained by Watson and Jauch a, but in a more compli­
cated manner than in Ref. 7. The question of the 
losses of energy in isotropic magnetic materials has. 
been considered especially in Ref. 9. However, 
erroneous results were there obtained (see Ref. 7 ). 
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of radiation for the ordinary and extraordinary 
waves in an anisotropic magnetic medium ( aniso­
tropic fl, isotropic f) as H~x and H:x' re-

spectively, and the energy of radiation of the 
ordinary and extraordinary waves in an anisotropic 
1ielectric (anisotropic f, isotropic f1 ), as aH~ X and 

a[J e , respectively. For the calculations we use 
ex • 

the fomulas (6) and the corresponding expressions 
from (10) and (ll). 

When the specifications of (8) and (9) are 
used, the result takes the following form: 

o e2tv 
Hex= 2n:c2 

(14) 

x ~ P.o (cos&~ sin cp' sin x- sin&~ cos x)2wdwdrp; 

The specificltions of (8) and (9) have been taken 
into account in these formulas. In the case of an 
anisotropic dielectric, f , = f , = E0 , f , = f (is o-x y z e 

tropic f1 ), and the equations for the indices of re­
fraction are: 

(19) 

From formulas (15) and (17) it is clear that for the 
motion of an electron along the optic axis of a 
uniaxial crysta ( x = 0 ), in an anisotropic magnetic 
material only the ordinary waves are radiated, and 
in an anisotropic dielectric only the extraordinary 
waves are radiated. 

Using the relations (8)-(12), (14), (18), we ob­
tain for- x = 0: 

0 e2tv ~ ( 2 ) d . Hex= 7 J f-Lo- €~2 (J} w, 

aH: x = e~2v ~ I ( P. - e0~2 ) I wdw." 

(20) 

(21) 

The region of integration can be found from Eq. 
(16), whi.ch can be written in the form (32 flo f> 1 

for Eq. (20) and in the form ( fe/f0 )({32 f1f 0 -1 )>0 

for F,q. (21). 
For motion of the electron perpendicular to the 

optic axis ( x = 77/2 ), we obtain 

(22) 

fie _ e2tv 
ex- 2n:c 2 

~ I fLotLe sin2 x cos2 ~, I 
x ,) f.L0 + (fLe- t-t0 ) (sin~ sin x- cos If ctg .&0 ) sin~ sin x 

x wdwdcp, (15) 

where &0 is found from the corresponding condi­
:tion of radiation (12), and the integration is taken 
over the region where the condition 

n~,e ~2 > 1. (16) 

is fulfilled. 
In crdEr to make a comParison with the case of 

an anisotropic dielectric", we write two formulas 
which Play be obtained from the equations derived 

1in Ref. 1: 
(17) 

(18) 

e e2tv (25)* 
aH-.,x= 2n:c2 

x wd(ijdcp. 

The difference between Cerenkov radiation in 
media which are anisotropic in their magnetic 
properties from that in media which are aniso­
tropic in their dielectric properties is clea- from 
Eqs. (22)-(25). For example, the maximum in-

* For f1 = 1, Eq. (24) coincides with the correspond­
ing equation in Ref. 1. Equations (21) and (25) for 
f1 = 1 do not coincide with the corresponding equations 
in Ref. I because of an error made in this reference in 
carrying out an integration. 
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tensity in amagnetically anisotropic medium cor­
responds to zero intensity in a medium which is 
anisotropic in its dielectric properties, and con­
versely, and this is true both for the ordinary and 
the extraordinary waves. 

The case of double anisotropy is also interest­
ing. For the simplest medium of this type we 
choose a system of coordinates in which both the 
dielectric constant tensor and the magnetic 
permeability tensor are diagonal. The conditions 
imposed on a Ai and leading to Eq. (4) have the 
form 

and for 11 = 11 = " = l coincide with the results x y rz 

of Ginzburg5 . 

In a uniacial crystal with a double anisotropy, 
both polarizations correspond to extraordinary 
waves. Equation (18}, and consequently (21) and 
(25), but with 11o in place of p., holds for one 
polarization .. The energy of radiation of the 
waves of the other polarization is determined by 
Eq. (15}, hut with f() in place of f. The extra­
ordinary waves eorresponding to the second 
polarizaion [ Eq. (l5)] are not radiated for a 
motion of the charge along the optic axis. 

In conclusion, the author takes the opportunity 
of expressing his sincere gratitude to Prof. V .L. 
Ginzburg for proposing the problem and for 
valuable suggestions. 
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