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The general case of motion of electrons in cyclic accelerators has been investigated, 
taking account ot quantum effects, when axial as well as radial oscillations are possible. 
We show that the quantum effects can be included by quantizing the adiabtaic invariants 
according to the Bohr-Sommerfeld method. The effect of quantum fluctuations on radial­
phase oscillations in a synchroton is also investigated. Finally, the problem of quantum 
excitation of macroscopic oscillations is discussed. 

l. ADIABATIC INVARIANTS AND EQUILIBRIUM 

ORBIT 

JN the present paper, we want to investigate 
electron motion in a magnetic field according to 

quantum theory, and include the possibility that 
axial as well as radial oscillations can be produced. 
In this case it is simplest to solve the problem in 
cylindrical coordinates r== ..J x 2 + y 2 , z, cp. 

We shall first consider the motion of electrons 
in cylindrical systems like the betatron, where the 
variation of the magnetic field H over the region 
around the stationary orbit (r==R 0 == const, z==O) is 

given by 

H = const·r-q, (l) 

and its average value satisfies the Wideroe condi­
tion 

Ro 

H (R0 ) = + ~ rH (r) dr = 2H (R0), 

Ro o 
(2) 

which has been investigated in detail by Terletskii. 5 

In addition, the magnetic field H must satisfy the 
equations: 

div H = 0, curlH = 0. 

In order to satisfy conditions (2) and (3), the 
vector potential is taken in the form 

and the average value if set equal to 

1/ 2 H(r,z) 
co 

(3) 

(4) 

(5) 

= H (r) ~ bt (~) i + f! (r) (1- q) (..!._)q-2 
(2- q) . r 2 (2- q) R ' 

t=O 0 

* The present paper is a continuation of a series of 
l-4b h pap.er~ y t e authors on thequantum theory of the 

rad1atmg electron, which we shall cite as I-IV. 
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bt = (- l)i (q- 2)2q2 (q + 2)2 (6) 

... (q + 2i- 2)2 1 (2i)! (q- 2) (q + 2i- 2). 

H (r) is given by formula (1). The last term on the 
right of (5) is chosen so that, on the one hand, it 
does not affect the value of the magnetic field in 
the region of the stable orbit ( z== 0 ), since 

H(r) = _1_iJit2 r2H 
r ar ' 

(7) 

and on the other hand so that conditions (1) and 
(2) are satisfied for r==R 0 and z==O. It will be 

sufficient to take the first two terms in the ex­
pansion of the sum in (5): 

112H(r,z)~ .H(r) [1 + q(2-q) z2] 
(2-q) 2 r2 (8) 

+ J-1 (~) (l - q) (_:_)q-2 
<2 - q) Ro · 

In our case, the Lagrangian and the generalized 
momenta are 

p" = (e I c) r 2 (H- 112 H), 

Pr=(Eic2)r, 

{9) 

- (e I 2c) Hr2~, 

(10) 

Pz =(£I C2) Z 

Here we have made use of the fact that for the 
stationary orbit . 

~E = eHR0 , 

and the electron energy is 

E = mc2 1 V 1 - ~2, 

(ll) 

(12) 

where cf3 is the electron velocity and m its rest 
mass. 
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We shall show that the electron traject?ry, in­
cluding quantum effects, can be found usm g the 
Bohr quantum theory. The final results a~eee 
in first approximation with the results of ngorous 
quantum theory. This method is very conve~ient 
for practical computations when the energ_y I_s not 
toohigb, since it is very simple ~nd_desc_nptive. 

We introduce the three adiabatic mvanants 
associated with the azimuthal quantum number 
l= O, + 1, + 2 ... , the radial quantum number 
s= O, 1,2 ... , and the axial quantum number k=O, 
1,2 ... 

cj5 p,dr = 2nhs, 

" (13) 
gs pz{iz = 2-rrhk. 

According to the Ehrenfest adiabatic principle.' 
the adiabatic invariants remain unchanged durmg 
slow variations of the magnetic field. In parti­
cular we see from (10) and (13) that on the sta­
tion~y orbit [ H ( R 0 ) = ~ H (R0 ) J in the 

absence of radial and axial oscillations all the 
adiabatic invariants become zero, i.e., l==k=O 
(the "ideal orbit"). 

2. OSCILLATION OF THE ELECTRON ABOUT 
THE INSTANTANEOUS EQUILIBRIUM ORBIT, 
ACCORDING TO CLASSICAL THEORY 

We shall investigate the stability of the 
motion when the adiabatic invariants are different 
from zero. 

In the relativistic C(lse, the energy is related 
to the momenta by 

£2 I c2- m2c2 = p~ + p; + V (r, z), (14) 

where the quantum number 

n = l + 10 , 10 = R~eH(R0)(1 -q)jch(2-q) 

is not an adiabatic invariant since it follows from 
(16) that, even when 1tll= 0, with increasing mag­
netic field the radius R of the instantaneous 
equilibrium orbit approaches the radius R 0 of the 

stationary orbit (R -+R 0 ). 

When sl= 0 and k f 0, using Eqs. (10) and (14) 
we get the following approximate equations des­
cribing the radial and axial oscillations: 

E d2 E 
C2 dt2 (r- R) + C2 ~ (r- R) = 0, 

E d2 E 
C2 df2 z + C2 6l~Z = 0, 

(17) 

(18) 

where, for sufficiently large values of H, we may 
set 7 

= 6lo VI- q, 6l2 = 6lo Vq, 
where w 0 = c/R is the angular velocity of rota­

tion of the electron in a circular orbit. From this is clear 
that the oscillations will be stable forO < q < I. We 
use (13) to determine the amplitudes A and B . We 
then get 

A2 = 2hcsl eVI -qH = A~H (0) 1 H, (20) 

B2 = 2hckl e V{jH = B~H (0) I H, (21) 

where H (0) is the magnetic field at t=O. It is 
then clear that as the magnetic field is increased 
adiabatically, the amplitudes A and B of the radial 

- 2 and axial oscillations gradually decrease. Sub-
where the function V (r,z) = ( 1t~/r + erH /2c) can. stituting the solutions of equations (17) and (18) in 
be considered to he the expressiOn for some effective ( ) f' d h · f th f th 

d . R f h 14 we m t e expresswn or e energy o e potential energy (cf. Ref. 6 ). The ra IUS o t e elec~ron 
instantaneous equilibrium orbit, for which there 
are no radial oscillations (s=O) and no axial oscil­
"lations (k =0) can he found from the equations 

av(r, z) I = ava(r, z) = O. 
ar z 

r=R 
(15) 

We thus obtain 

z =0, R = [ nc1i (2- q) 11/ (2-q) (16) 
eH (R0 ) Rg (1- q) 

lc1i (2 - q) Jl I (2-q) 

eH (R0 ) Rri (1 - q) 

lc1i 
~ Ro + efi (R0) Ro (I - q) ' 

E-:- e2H 2 (R) R 2q "' -{ [ nc""(2 q) ]2(1-Q)/(2-Q) 

eH (R)Rq (1-q) 

+ eH (R) VT=q 2chs 

+ eH (R) V{j2chk + m2c4}''•. 

Differentiating with respect to the adiabatic in­
variants, we again get the values of the circular 
frequencies 
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<Uo = aE I ah! = c I R, 

(l)l = aE I ahs =VI- q <Uo, 

(1)2 = aE I ahk = Vii <Uo. 

3, CRITERION FOR APPEARANCE OF 
QUANTUM EFFECTS 

As was shown by lvanenko and one of the 
authors 8 ( cf. also Reference 9 ), the spectral 
angular distribution of the radiation is given, in the 
classical case, by the expression 

Wv (6) d'l sin 6d6 = ;;~~2 {e2K,1, ( ~ 8 '1•) 

+ e cos2 6K,,, (; e''•)} dv sin 6d6. (22) 

Integrating this expression over angles, we get a 
formula which quite accurately describes the 
spectral distribution of intensity of the radiation 
over the whole frequency range: 

9V3 oo 

Wv dv = &!"" Wc1 ydy ~ dxK.1, (x), (23) 
y 

where dv=1, c=1 -{3 2 sin2 eand the quantity y 
is proportional to the harmonic numoer of the radia­
tion: y= 213 1.1 ( me 2 I E ) 3 • Integrating (23) over 
all frequencies, we get 

Q) 

~ Wvd'l = (2e2C I 3R2) (E I mc2) 4 = wcl· 
0 

The integral intensity of the radiation, taking 
quantum corrections into account is 

W = Wc1 {1- (55 }13 I 16) (li I mcR0)(E I mc2) 2}. 

(cf. I and II; later this formula was also obtained 
in Reference 10 ). From this we see that quantum 
corrections to the integral intensity will be com­
parable to the corresponding classical quantities 
only in the region of very high energies, E "-' E , 
where 112 

(24) 

This con clition (p. = ~ ) for the appearance of 
quantum corrections refers to the quantum num­
ber l or n. Despite the limitations on this condi­
tion, some authors assume that forE << E 112 

we can in general neglect quantum corrections 
(cf., for example, Ref. ll ), and assert that all 
attempts to set a more stringent condition for 

quantum corrections than the condition E "-' E 112 
will fail. We cannot agree with this viewpoint. 
For this purpose, let us study the change of the 
other adiabatic invariants 1is and 1ik as a result of 
radiation. 

The amplitudes of harmonic oscillations can 
change non-adiabatically if: a) there is a sudden 
change in the position of the center of oscillation, 
or b) some momentum is suddenly imparted to the 
oscillating point. Suppose a material point is 
carrying out a harmonic oscillation along the x-axis. 
Then the square of the oscillation am;litude can be 
found from the relation D ~ = x 2 + p c 4 I E 2w2 

h 2 • . ' 
w ere p= ( E I c ) x IS the momentum of the 
particle. The changes in the quantities x and p 
are given by 

X= Do sin (<Ut + cp), p = (E<U I c2) D0 cos (<Ut + <p), 

where cpis a phase which, In general, depends on the 
initial conditions. 

Let us suppose that at a certain instant of time 
the center of oscillation is shifted by an amount ~. 
or the momentum is changed by an amount flp. Then 
the square amplitude of the oscillation will be 

D2 = (x- l!.x)2 + (p + l!.p)2 c' I £2<U2 

= D~- 2D0 sin (<Ut + c.p) llx 

+ f!.x2 + (c4 1 £2<U2) [f!.p2 

+ 2tlp D0 (E<U I c2) cos ( <Ut + cp) J. 
If we assume that the excitation of oscillations 
occurs statistically independently (cf. Ref. 12)*, 
then, by averaging the last expression over cp, we 
get 

From formula (16) we see that the radiation of a 
photon with energy 1ivw 0 leads to a decrease of the 
radius of the trajectory by the amount 

l!.R = _1_:!_R = _1_il.E R, 
2 -q n 1 -q E (26) 

where l!.E "'vcn/R. We can get an analogous ex­
pression for the change in radius by introducing, 
on the right side of Eq. (17) which describes the 
radial oscillations in the classical case, the fluc­
tuation force t 

Fr = ~ [~ t-t (t, ti) n<Ui- ~ Wdt] 
I 0 

* This result will be established more rigorously 
later, using quantum mechanics (cf. Section 4). 
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(ti is the time of emission, fl = 1 for t > ti, fL = 0 
fort < t. ). On the other hand, as we see Irom (20), 

I 
quantum· radial transitions can occur if the square 
amplitudeof the oscillation changes by at least the 
amount~ (A 2) rv fie/ eli = R 2/n (~s = 1). Thus we 
obtain the condition (M) 2 > MA 2) or v 2 /n » 1 
for production of radial oscillations as a result of 
quantum fluctuations of the radius. Substituting 
the harmonic number v corresponding to the maxi­
mum of the radiation, v rv (E/mc 2)3, and setting n 
equal to n rv RE/1ic, we find the condition for ap­
pearance of radial quantum oscillations to be E 
> E , where E is given by formula (24) with 

1/5 1/5 
fl = 1/5. This condition was already found in the 
first papers on the quantum theory of the radiating 
electron 13 (cf. also I and Ref. 14). 

It is just as easy to get the condition for appear­
ance of axial quantum oscillations. Axial oscilla­
tions are produced as a result of the recoil of the 
electron when it emits a photon. When a photon is 
emitted, the z compon.ent of the momentum changes 
by an amount ~Pz = (1£ w/c) vcos8. According to 
(25), the increase in the amplitude of axial oscilla­
tion due to emission of one quantum is 

We note that (27) can also be obtained from the 
classical equation (18) for the axial oscillations, 
by substituting on the right the corresponding fluc­
t.uation force 

Fz = s~pza(t- l;). 
i 

On the other hand, for a minimal change of the adi­
abatic invariant (~k = 1), the increase of the square 
amplitude is equal, according to (21) to 

(28) 

From (27) and (28) we see that quantum corrections 
for the axial Qscillations must be considered when 
(M 1) 2 > ~(B2), i.e. JJ'Io/n > lorE >E 113, where E 113 is 

given by (24) wi:th fL = 1/3. This condition was 
given in the first edition of the monograph of lvan­
enko and one of the aut.hors.15 

4. DEVELOPMENT OF RADIAL AND AXIAL 
OSCILLATIONS ACCORDING TO QUANTUM THEORY 

According to the criteria which we have es­
tablished in the preceding paragraph, quantum 
effects should first influence the radial oscilla­
tions (when E rv E 115), then the axial oscillations 
(when E rv E 113), and will only affect the total 

intensity of the radiation in the region of very high 
energies (when E rv E 112). 

Quantum excitation of radial oscillations should 
begin to play an important role in the energy region 
E > E 11 !i, since according to the classical theory 
the amplitude of oscillation then tends to zero. 

As we see from formulas (20), (21), (26) and (27), 
when a photon is radiated the quantum numbers n, 
s, and k change by the amounts 

~l = l' -l =- v, (29) 

~ 1 v2c1i 
s = 2 (1 _ q)'l• R2eH (R) ' 

1 v2c1i 2 
~k = --- R2 h ( ) cos 6, 

2Vq " 1-< 

But according to classical theory, the quantum 
numbers s and k should remain constant. The ex­
pressions (29) were obtained by a semiclassical 
method (since in considering the radiation of an in­
dividual photon, we averaged over the phase cp. 
We shall show that a more rigorous quantum treat­
ment will lead us to the same expression (29). Ac­
tually ~e c_an treat the oscillations along r and z 
as oscillations at non-relativistic velocities but 
with the relativistic mass E/ c 2, and having fre­
quencies w = ~c/R and w = yqc/R re­
spectively. 1 Thus the wave functfons will have the 
forms 

while the radius of the instantaneous equilibrium 
orbit R = R (l) is given by equation (16). Let us 
find the probability of transition W , of an elec-
tron from a state s to state s ', with~ change of 
azimuthal quantum number from n to n '= n - v. 
The transition probability is equal to the square of 
the matrix element 
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00 

Wss' = \ ( + ~1 )''• \ dr exp {- ~1 [r- R (n)]2 
1t28 s s! s'! ) 

0 

- ~1 [r- R (n- v)J 2} Hs [yi,I(r- R (n))l Hs' [1/~ (r- R (n- v))l\2 

=I e-~: 12 ~ dxe-x' Hs (x- VI"· ~1 ) Hs' (X + v ~1 ) r = l~s' (~1), V 1t2s--r-s s! s'! _:oo 

~1 = 112 /,1 [R (n)- R (n- v)]2 = v2 I 2n (2- q) Yl- q. 

The functions l ,(~ ) are related to the Laguerre 
ss l , 

polynomials Q: ,- s (~1 ): 

Is's (~) = 

Thus, in a single transition, the change of the 
quantum numbers is 

00 

D.s = ~ (s'- s) l~s' (;1) 

s'=O 

(30) 

(31) 

Earlier we obtained this last expression by a semi­
classical method [cf. Eq. (29)]. 

By a similar method we get the transition proba-
bility W , from a state k to state k ', when the z 
componek;t of the photon momentum is 

D.pz = tz. (wo 1 c) v cos a; 

or 

where c = w 2v2 cos 2 8/2c 2.\ , and the functions 
"'2 0 2 

I ~~ ) are given by (30). When a photon is 
kk 2 . h d"ab . . emitted, as a result of the recoil t e a 1 atlc In-

variant k which measures the amplitude of the ax­
ial oscillations changes by an amount 

00 

D.k = ~ (k' - k) Jf,k' (~2) 
k'=O 

(32) 

which coincides precisely with the corresponding 
expression (29) which we found by a semiclassical 
method. Thus the average over phases in the 
semiclassical method gives the quantum result, 
which justifies the genera I theorem of statistical 
independence of emission of photons in the quan­
tum case. 

As we see from formulas (31) and (32), the change 
of the adiabatic invariants s and k per unit time as 
a result of quantum transitions will be 

0> "' 
dl \ \. vW,(8) 
err = - J d'l) Sin BdB iw>o ' 

0 0 
(33) 

0> '; 2 w (8) 
ds ~ d ~ . r.dr' cv i , - = v s1n •1 " --
dt . . 2 (1 _ q)'/, eHR2 ivw0 ' 

0 0 

dk ~ood "'~ . ndn cv2i cos2 6 W, (6) 
- = v stn •J v --, 
dt 2 y q eHR2 ivw0 

0 0 

•where the quantity W v (8) is given by (22). Intro­
ducing the variable 

x = (v 1 3) e'lz =(vI 3) (1- ~2 sin2 B)'lz 

and carrying out the integrations (cf. II), we obtain 
expressions giving the total change of the radius 
and also of the amplitudes of radial and free axial 
oscillations: 

t 
R2-q = R~-q - _3_ e2c 2 - q r ( E )4 1 

3 eH 1 - q ~ mc2 R dt' (34) 

(35) 

t 
+ ~ e21LR \ ( E )s 1 

24Y3 (1-q) 2 mEj mc2 R2 dt, 
0 

t 
B2 = B~ H (0) + ~ e21LR (" ( E )4 1 

H (t) 24 V3 qmE ) mc2 J<2 dt · (36) 
0 

The first term in Eqs. (35) and (36) corresponds to 
the classical contraction and the second to the 
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quantum broadening. Formula (35) for the radial 
oscillations was obtained by us earlier, both for a 
uniform field ( cf. III, q == 0)*, and for a field having 
axial symmetry (cf. IV, q f. 0). In the present 
paper we have generalized this formula to the case 
where axial oscillations are also possible, and 
have also determined the influence of quantum 
effects on the magnitude of the axial oscillations. 
From the last formulas we see that quantum effects 
should have a very strong influence only on the 
free radial oscillations. 

As we see from formulas (20) and (35), because 
of rhe quantum character of the radiation the per­
centage increase of the mean square radial devia­
tion from the instantaneous equilibrium orbit M 2 

2 qu 

== x == l/2A 2 will vary according to thO! law (cf. 
also III and IV) 

( LlRqu,\2 = 55 V"§" e21ic {(.!:__)6 _1_dt 
R ) 48 (1 -q)2 mER.) mc2 /(2 • (37) 

0 

5. RADIAL-PHASE OSCILLATIONS IN A SYNCHRO­
TRON WHEN QUANTUM EFFECTS ARE INCLUDED 

In the preceding paragraphs we have shown that 
fluctuationt!; of the radius, which are associated 
with the quantum character of the emission, lead to 
excitation of a special type of radial oscillations. 
Therefore, for the motion of an electron in a synchro~ 
tron, we must still estimate the effect of these 
fluctuations on the so-.called radial-phase oscilla­
tions. 

In a synchrotron, the increase in energy of the 
electron results from passage of the electron through 
an accelerating gap. In a single turn the energy 
increases by the amount e V sinqJ where V is the 
amplitude of the voltage across the accelerating 
gap, and cpis the phase at which the electron 
crosses the gap. On the other hand, in one turn the 
electron loses the energy I== (4rre 2 /3R) (E/mc 2 ) 4 

as a result of radiation. Thus the average increase 
per unit time is 

dE I dt = c.u (eV sin <p- /) 1 21r, (38) 

where w is the angular velocity of rotation of the 
electron. We shall denote quantities referring to 
the instantaneous equilibrium orbit by the index s. 
These quantities are related by the equations 

* For a uniform field, Eq. (35) was obtained rigorously 
in III, using the Dirac equation. 

The increase in energy of the electron will be 
given by 

(39) 

= <.Us (eV sin <ps-Is) I 27r. 

We note that in the extreme relativistic region the 
energy loss per turn reaches values far exceeding 
the average energy given to the electron per turn, 
i.e., 

(40) 

Denoting the deviation from the equilibrium phase 
by tf; == cp- cps' we have 

<.U- <.Us = ~. (41) 

~R IRs= ~E 1(1 -q) Es = -~ lc.us, 

where M == R - R , ~E == E - E • Subtracting 
s s 

(39) from (38), we get 

d eVcosrps /-15 LlE . (42) 
-dt ~E= • <.Us'l>- -- <.U + _s '" 

:!.1t 1 ~TC S ~1t 'f• 

Using the fact that in the ultrarelativistic case, at 
a given time, E == eHR == const · R 1 - q' i.e., 

l==const · R3 - 4 q we find 
' 

f-fs=-(3-4q) fs~lc.us. 

In addition, using (40) we can drop the last term 
on the right of (42) and set e V cosm "' I cot m . 

Ts s Ts 

Then we get the equation for the radial-phase os­
cillations 

The damping coefficient y and the angular fre­
quency of the radial-phase oscillations, n, are 
equal respectively to 

r = (Ws I Es) (3- 4q) J (1 - q), 

(43) 

!22= WsWsctg<psl(1 -q)£8 , 

where the quantity W == I (c/2rrR ) is the energy 
loss through radiation: per 5unit tim~, for an elec­
tron on the stationary orbit. 

From this it is clear that the radial-phase os­
cillations will be damped for q < 3/4; if q > 3/4 
the motion will be unstable. From equations (41) 
and (43) we find the following differential equation 
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forM: 

d2ilR I dt2 + 1dilR I dt + 0.2/lR = o. (44) 

The solution of this equation has the form: 

ilR = e-Y 112 cos Qt ilA. (45) 

For high energies, the quantity M will be the 
oscillation amplitude which results from the quantum 
character of the radiation. We then get for the 
mean square percentage shift in radius the value: 

Suppose that the radiation occurs at some time t .. 
Then we get for the square of the ratio f..R/R 1 

the value s 

( tlR)z = __ 1_ (tl£y)2 - _1 ~ -Y (t-til 
R5 (1-q)2 £:_'2 - 2 ~e Wvdf,(47) 

s v 

where 11£ ==1i vc/R , while W is given by (23). 
Summing the right sic1e of (47) ~ver v, and assuming 
that during the damping time T== 1/y the energy 
E s can be taken to be constant, we get the equa­
tion found by Sandsl6 

' 

In this case, Eq. (37) should be used for t < T. 

and its limiting form [cf. E-q. (48)] for t » T. ' 
We note that relation (48) can be obtained from 

~ur mo~e .general formula (37) [cf. also III and IV] 
tf we hm1t the duration of the free betatron oscil­
lation& to the damping time T. 

In conclusion, we note that the amplitudes of the 
radial oscillation and radial momentum will be of order 

(49) 

P ~ (Ewfc2) A~ VeHhsjc. 

If the quantum number s changes by unity as the re­
sult of emission of radiation, we get an uncertainty 
in these amplitudes equal to 

ilA ~ (oAjos) ils ~ A/s, ilP,......., Pis, (50) 

since it is impossible by present theory to determine 
when the emission occurred. In the classical ap­
proximation E << E l/. 5 ~ the value of s does not 

change, so that this mdeterminacy cannot occur. 
But in the quantum case E >> E 115 , a change of 
the quantum number s will occur several times in 
the course of a single period of oscillation. The 
change in s leads to indeterminacies in the coordi­
nates, f..x and ilp, which cannot be given by (50), 
since for s >> 1 we would obtain the inequality 
f..xilp "'-ft/ s <<1'{, which contradicts the uncertainty 
relation f..xilp ""1i. Thus we have two limiting 
cases giving uncertainties in coordinate and mo­
mentum, 

ilp '~ ilP,......., Pis, ilx ~ hjilp,......., A 

Neither of the two cases permits a classical approxi­
mation. To investigate the quantum excitation of 
macroscopic radial oscillations, forming a sort of 
"macro-atom", we can use either the rigorous 
methods of quantum theory as was done in Section 
4, or the classical equations (17) and introduce 
fluctuation forces (cf. Section 3). 

In the equivalence of the two methods we are in­
clined to see a connection between quantum methods 
and the theory of fluctuations, where there are Mar­
koff processes whose basis is the statistical inde­
pendence of successive processes (cf., for example, 
the theory of the Brownian motion, and also Welton's 
theory which qualitatively explains the Lamb shift 
by considering fluctuations of the virtual photons). 
In any case, in the present example both theories 
actually give the same quantitative results. 

The authors thank l\1. S. Rabinovich for many 
valuable comments on the effect of quantum fluc­
tuations on damped radial-phase oscillations. 

1 Sokolov, Klepikov and Ternov, J. Exptl. Theoret. 
Phys. (U.S.S.R.) 23, 632 (1952). 

2 Sokolov, Klepikov and Ternov, J, Exptl. Theoret, 
Phys. (U.S.S.R.) 24, 249 0953); cf. also Dokl. Akad. 
N auk SSSR 89, 665 (1953). 

3 A. A. Sokolov and I. M. Ternov, ]. Exptl. Theoret. 
Phys. (U.S.S.R.) 25, 698 (1953); cf. also Dokl. Akad. 
N auk SSSR 92, 537 (1953). 

4 A. A. Sokolov and I. M. Ternov, ]. Exptl. Theoret, 
Phys. (U.S.S.R.) 28, 431 (1955); Soviet Phys. JETP 
I. 227(1955)· cf. also Dokl. Akad. Nauk SSSR 97, 823 
(1954). ' 

5 Ia. P. Terletskii, ]. Exptl. Theoret. Phys. (U.S.S.R.) 
11, % (1941). 

6 ]. A. Rajchman and W. H. Cherry, j. Franklin lnst. 
243, 261, 345 (194 7). 

7 D. Kerst and R. Serber, Phys. Rev. 60, 53 (1941). 
8 D. D. lvanenko and A. A. Sokolov, Dokl, Akad. Nauk 

SSSR 59, 1551 (1948). 
9 j. Schwinger, Phys. Rev. 75, 1912 (1949). 



258 SOKOLOV, TERNOV AND STRAKHOVSKII 

10 J. Schwinger, Proc. Nat. Acad. Sci., 40, 132 (1954). 
11 V. L. Ginzburg, Usp. Fiz. Nauk, 51, 343 (1953); 

cf. footnote on P• 350. 
12 W. Paulli and M. Fierz, Nuovo Cimento 15, 167 

(1938). 

13 A. A. Sokolov, Dokl. Akad. Nauk SSSR 67, 1013 
(1949). 

14 A. A. Sokolov, J. Exptl. Theoret. Phys (U.S.S.R.) 
24, 488 ( 1953). 

15 D. D. lvanenko and A. A. Sokolov, Classical Theory 
of Fklds, Moscow-Leningrad, 1949, p. 281. 

16 
M. Sands, Phys. Rev. 97, 470 (1955). 

Translated by M. Hamermesh 
87 



SO VIET PHYSICS JETP 

P. 218, column 2, Eq. (10) 

P. 219, column 1, Eq. (11) 

P. 219, column 1, Eq. (12) 

P. 223, column 1, Eq. (45) 

P. 223, column 2, Eq. (46) 

P. 225, column 1, 3 lines above Eq. (1.1) 

P. 225, column 1, 3 lines above Eq. (1.2) 

P. 256, column 1, Eq. (37) 

P. 289, column 2, Eq. (2) 

P. 377, column 1, last line 

P. 436-7 

P. 449, column 1, last Eq. 

P. 449, column 2, Eq. (12) 

P. 451, colwnn 1, Eq. (7) 

P. 541, column 1, Eq. (28) 

P. 543, column 2, Eq. (35) 

VOLUME 4, NUMBER 6 

ERRATA TO VOLUME 4 

reads 

. . • (t gyv'3i2. . . 

. . . (E 011 3 I 4 )y'314 

3V3/4 •• - J1 ••• 

transversality 

transversality 

55\1'3 
.. -48- ... 

JULY,1957 

should read 

••• g<\1'2+2 )/(2-Va) ••• 

... <tg)J vm. 

y2 -p 213 >> 1 

. • • (E 0 11 3 I 4 )Ya I 4 

... J13y374. . 

cross section 

cross section 

55 
. . ·~·48" 

n 
I= 2. _!._ A '2. L Y <n1 > Y (n 2 ) 

n 2n+l n v=-n 1 +iwT nv nv 

O 35 = Tf -21 X 1] 5 0 35 - 211]5 

Figures 2 and 3 should be exchanged • 

. . . y 
lm cpa u. 

. • • W (l , i, a 1 ; i ) . . . 

fl./* monex 
++ 

... r 
p2 -r + z 2 

0 

979 

• • • Yzm ::Pa o.. 

• •• W (l ,; , a 1; a i) . .. 

M*monex 
+ 

.. r ... 
P2 < r- + z 2 

0 




