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The kinetic theory of the oscillations of an electron plasma in a constant magnetic field 
is examined, An investigation is made of plasma oscillations of frequencies which are in-
tegral multiples of the gyromagnetic frequency. The indices of refraction are determined 
for the ordinary, the extraordinary and the plasma waves which are propagated at an arbi­
trary angle e with respect to the magnetic field, It is shown that at frequencies which are 
integral multiples of the gyromagnetic frequency the plasma wave is highly damped if 
e < rr/2. If e"' rr/2 then the plasma waves corresponding to these frequencies cannot be 
propagated at all. In this paper the width of the "gaps" in the frequency spectrum of the 
plasn;a oscillations is determined. 

THE study of e"lectromagnetic processes in elec­
tronplasmainan,external magnetic field is of in­

terest for a number of problems in radiophysics 
and in astrophysics. 

In the absence of external fields the oscillatory 
properties of the plasma have been studied in the 
papers of Vlasov 1 and Landau 2 • A characteristic 
feature which distinguishes plasma from other 
media from the point of view of the propagation of 
electromagnetic waves is the possibility of the ex­
istence in the plasma of weakly damped longi­
tudinal electromagnetic waves (plasma oscillations). 

The presence of a magnetic field leads to an an­
isotropy of the properties of the plasma and also 
gives rise to a number of characteristic resonance 
effects. The properties of an electron plasma situ­
ated in a magnetic field have been investigated on 
the basis of the kinetic theory first of all by 
Akhiezer and Pargamanik 3, and later by Gross 4 

\<Vho showed the existence of bands of forbidden 
frequencies, which are integral multiples of the 
gyromagnetic frequency, when the plasma wave is 
propagated in a direction perpendicular to the di­
rection of the magnetic field. Subsequently, the 
properties of plasma in a magnetic field have been 
studies in Refs. 5-7. In particular, Gershman 6 

investigated the influence of thermal motion on the 
propagation of electromagnetic waves in the plasma. 
The theory of the propagation of electromagnetic 
waves in plasma is given in the hydrodynamic ap­
proxin,ation in the monograph by Al'pert, Ginzburg 
and F einberg8 • 

The present article is devoted to the investiga­
tion of the oscillations of an electron plasma in a 
magnetic field on the basis of kinetic theory. 

l. THE DISPERSION EQUATION 

We shall examine the free oscillations of a 
plasma in a constant and uniform magnetic field 
H. Sn1all oscillations of such a plasma are de­
scribed by the linearized kinetic equation 

iJf + v il/ + ~ E ilfo + ~ [vH] ilf = 0, (l) ot or m iJv me av 

where f( r, v, t) is a small deviation of the elec­
tron distribution function from the Maxwellian func­
tion 

n 0 is the equilibrium electron density, e and m are 
the charge and mass of the electron, T is the 
plasma temperature, E is the self-consistent elec­
tric field, determined by the equation 

where j is the electron current density 

j=e~vfdv. (3) 

The properties of electromagnetic osci,lations 
propagated in an unbounded electron plasma after a 
sufficiently long interval of time after the intro­
duction of the initial disturbance are described by 
the dispersion equation which relates the frequency 
of the oscillations w to the propagation vector k. In 
order to find the dispersion equation we shall 
look for the solutions of Eqs. (l) and (2) of the 
forn; 

f (r, V, i) = f (v, k, (u) ei(kr o>tJ; 

E (r, L) = E (k, u)) ei(kr-wtJ. 
(4) 

512 
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Substituting (4) into (1) and (2) we shall obtain a 
system of equations for the amplitudes f(v, k, w) 
and E ( k, w): 

i (kv- w) f + e (Ev) f'o- (J)ff of I o& = 0, (5) 
!. ~ 

- k2 E + k (kE) + (0)2 1 c2) E =- i;; (J) ~ vfdv.(6) 

Here f~ = afol aE, E = mv 2/2, WH =ell/me is the 

gyromagnetic frequency of the electrons and lJ is 
the polar angle in the velocity space (the Z axis 
is directed along the magnetic field H, and the 
angle lJ is measured from the plane containing the 
vectors H and k ). 

The integration of Eq. (5) yields 
& 

f (v) = _!!___ f~ E exp {____£___ \' (kv- (J)) d&} 
wff lwffj 

0 

& <!> 

><E v exp {- ~H \ (kv- (J))d·¥} d•¥ +C}, (7) 
0 0 

where the constant of integration C is determined 
from the condition of periodicity f( lJ + 2rr) 
=f( (} ): 

27t <)I 

C = ~ v exp {~H ~ (kv -(u) d•f} 
0 0 

27t 

)( d~l [ l - exp {~H ~ (kv- (J))d&}]. 
0 

Substituting (7) into (6) we shall obtain a system of 
equations which determines the electric field of 

the plasma waves 
3 

~ {n 2 (K;xk- o;k) 

k=l 

(i = 1 ,2,3). 

Here n = kc/GJ is the index of refraction for the 
wave of frequency w, It;= k/k and Eik is the di-

(8) 

electric permittivity tensor of the plasma in the 
magnetic field which is determined by the expres­
sion (see Hef. 7 ), 

(9) 
, . . 4rre2 (' ' 

z;k (w, k) = 'Jik + t ww H ~ vi{0 exp (iat sin & + i~&) 
& 

X{~ Vk exp (-- iat sin·~- i~~) d•f + Ch} dv, 
0 . 

where 

at= k.xVr I (J)H, ~ = (kzVz- (J)) I (J)H • 

The dielectric permittivity tensor introduced 
above depends not only on the frequency w, but 
also on the propagation vector k, i.e., the plasma 
is a medi urn in which the dispersion depends both 
on space and time 9 • In such media the value of 
the vector of the electric displacement D ( r, t) at 
the point r and at the instant of time t is determined 
by the values of the field E ( r ', t ') over all space 
and at all instants of time. 

Taking into account the fact that 
= 

e-ia ,;n <)I= ~ Jll (at) e-iny; 

n=-oo 

2!t 

~ ei" sin <jl-in<Jid~ = 2dn (at), (10) 

0 

and also using the well known recurrence relations 
for the Bessel functions ] n ( u. ), we shall write the 

components of the tensor Eik in the following form: 

0 2 4z 
:>11 =I-- - 0 

w21r·;:; 

(X) 00 ' 

)( ~ ~ ~ te-t'J~ (l,t) dt ~ :::~ dy; 
ll=-00 0 c 

(ll) 

00 00 • ') 

_ 0 2 4zo ~ _ , 2 ~ y 2e-y- . ~33=1- 2 v- ~ te tJn('At)dt --dy, 
w rr LJ . zn- y 

ll=-co 0 c 
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where 

(a is the Debye radius, 0 is the Langmuir fre­
quency). Integration over y in (11) is carried out 
along the contour C along the real axis going around 
the singular pointy= zn on the lower side 2• 

The system of equations (8) has a solution dif­
ferent from zero provided its detern1inant is equal 
to zero. This dispersion equation, which connects 
the frequency w and the propagation vector k of the 
electromagnetic waves in the plasma, can he writ­
ten in the form 

An4 + Bn2 + C = 0, (12) 

A = sn sin2 B + z33 cos2 B + 2::: 13 cos B sin&, (13) 

e is the angle between the directions of H and k 
( }(, l = sine, }(, 2 = 0, }(, 3 == cos e). 

In the general case, the dispersion equation (12) 
is quite complicated, and therefore we shall re­
strict ourselves to the examination of the limiting 
cases of a weak magnetic field ( WH << f1) and 
"low" temperatures ( wH >> ks ). 

2. WEAK MAGNETIC FIELD 

In the case of a weak magnetic field ( WH << n) 
it is convenient for the calculation of fik to start 
not with Eq. (11), but directly with Eq. (9). In­

tegrating over 1/J in (9) by parts and noting that for 

I z I = v (3/2) I < w/ks) 1 » 1 and 1 Im z 1 « 1 

1 \ e-Y2 1 ( 1 3 ) 
Vi1t ~z-ydy;::;;z 1 + 2z 2 + 4z4 + ··· ', (14) 

c 

we obtain for the components of the dielectric per­
mittivity tensor the following expressions 

Here <o = 1- 0 2 /w 2 is the dielectric permittivity 
of the plasma in the absence of a magnetic field, 
v = 0 2/ w 2 , u = w~/ w 2 • Using (15) we write the 
dispersion equation (12) in the form 

~: vna-(s0 -uvsin2 B + }~:vz0)n4 (16) 

+ [ 2s~- uv (2e0 + sin2 &) + { ~vz~]n2 . 

- e~ + e0UV ( 1 + e0 ) = 0. 
Neglecting terms in (16) which are proportional 

to S 2/ c 2 << 1, we find the indices of refraction for 
the ordinary and the extraordinary waves 

2 2e:0-uv(2e:0+sin20) ± {[2e:0-uv(2e:0+s in20) ]2-4( e:0-uvs ln20) [ e:~ -e:0uv( 1 +e:o)]} '12 (17) 
n1.2= 2 (e:0 - uv sin2 0) 

For the index of refraction of the plasma wave 
n 3 we obtain the following expression in the case 

"o << l: 

(18) 

If <o "' 1, then the third solution of (16) does not 
satisfy the condition I z I » l, under which Eq. (16) 
itself has been obtained. 

----------------------------------
Expressions (17) and (18) hold if the terms in 

( 16) neglected in obtaining (17) and (18) are small 
compared to the terms which have been retained. 
For this to hold it is necessary that the following 
inequalities should be satisfied 

js0 - u sin2 01 ::?> (s / c)so, 

(s/c)Vu20 , (sjc)VuldniJ!. 
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In the opposite case, when 3. STRONG MAGNETIC FIELD (LOW TEMPERATURES) 

(s0 - u sin2 8) ~ (s /c) V u I sin fJ I 
we have 

n~ = u, (19) 

n~ = Vu 1 sin 61 c 1 s (I sino I~ sIc Vu). 
In the case e = o and fo = 0 all three solutions of 
(16) reduce to zero. 

We shall now investigate the dispersion equa­
tion in the case of low terr;peratures ( ,.\ << 1 ). Far 
from the resonance frequencies ( [Z n [ >> 1) we 
may use the asyruptotic expression (14) for the 
integrals along the contour C in (11). Expanding 
the functions ! n ( ,.\t) and J ~( ,.\ t) in series in 
powers of ,.\, we obtain the following expressions 
for the components f ik: 

s11 = I-vl(1-u)-k2a2v2 [ (~~~~;. cos2 0+ 3(1-up(l-4upsin2 BJ; 
€12 =- iv llu 1 (1- u)- ik 2a2v2 ~ru [(3 + u) (I- u)-3 cos2 6 

+6 (1- up (1- 4up sin2 6]; 

813 =- 2k2a2v2 (l- ur2 sin 6 cos 6; 

s22 = 1-vi(I-u)-k2a2v2 [(1 +3u)(1-uf3 cos2 D 

+(1 +Su)(1-up(l-4upsin2 6]; 

s23 = ik2a2v2 Vu (3- u) (1 - uf2 sinD cos 6; 

s33 = 1 - v- k2a2v2 [3cos 2 6 + ( 1 - uf1 sin2 6), (20) 

The terms in (20) which are proportional to 
( ka) 2 take into account the thermal motion of the 
electrons in the plasma which determines the 
spatial dispersion of the medium. 

A _ 1 - u- v + uv cos2 6 (22) 
o- 1-u ' 

Making use of (20) we evaluate the coefficients 
A, B, C of Eq. (12) 

Bo = (2- v) u- 2 (1 - v)2 - vu cos2 6 
1-u 

A =Ao+A 1n2 ; (21) 
Co = (1- v) [(1- v)2- u) 

1-u 

B = B0 + B1n2 ; C = C0 + C1n2 , 

4 - s2 {3 4 fJ + 6 - 3u + u2 -2 D • 2 D + 3 . 4 u} . 
• 1 - - 3c2 V cos (1- u)a cos Sll1 (1- u) (1- 4u) Sll1 ' 

B _ s 2 {2 (1 + u- v) 2 tJ • 2 0 
1- 3c2 V (1 -u) 2 COSvS111v 

+ 17 ~:26 [0- u- v) ( 3cos2 6 + ~in2 ~) + (1- v) ((~ ~ ~~2 cos2 6 + ~s_::~)J 
+ 2sin2 0 l·1 + 3u-v-uv 2 6 + . 2 6 2 (1- u) (1 + 2u- v) ].} . 

(1- u)2 1- u COS Sll1 1- 4u ' 

C __ ~ {2 (1 -- v) l1 -j- 3u- V-llV 2 Q + (1- u) (1 -j- 2u- V) 2 . 2 f)] 
I- 3c2 V (1- u)2 1- u cos 1- 4u Sln 

+ (1 ~ ~;: u ( 3cos2 0 + ~in2 ~)}. (23) 

The coefficients A 1, B 1, C 1, which are propor­

tional to s 2/c 2 , represent corrections to the hydro­

dynamic approximation A "' A 0 , B "' B 0 , C "' C 0 • 

Thus the dispersion equation (12) takes on the 
form: 
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(24) 

A 1n6 + (A 0 + B1) n4 + (B0 + C1) n2 + C0 = 0. 

The three roots of this equation n i, n; and n ~ de­

termine, respectively, the indices of refraction of 
the ordinary, the extraordinary and the plasma 
waves. 

Neglecting the tenus in (24) proportional to 
S 2 I c 2 , we obtain the indices of refraction of the 
ordinary and the extraordinary waves in the hydro­
dynamic approximationS 

n~.2 = n; = (- B0 +VB~- 4A 0C0 ) / 2A0. (25) 

Taking into account the thermal motion of the elec­
trons we obtain 

compared to the terms which were retained. 
For the index of refraction of the plasma wave 

we obtain by the condition (29) 

(30) 

Expression (30) coincides with the expression for 
ni, which was obtained by Gershman. 6 If 
I A0 I ~I, then the third solution of the cubic equa­
tion (24) for n 2 does not satisfy the condition 
sn I c << I, which must hold if the expressions 
(20) for Eik are to be valid. 

Let us now find the solution of (24) for I A 0 I « I. 
The index of refraction for the ordinary wave is de­
termined as before by (29). We obtain the indices 
of refraction for the extraordinary and the plasma 
waves by assuming that for IA 0 I<< I n;, 3 >>I. 

(26) Retaining the largest terms in (24) we obtain 

Is± I~ 1. 

Since under the usual conditions S 2 I c 2 << I, the 
thermal corrections to n i, 2 are very small. 

If the absolute value of A = ( w 2 - w2) 
0 + 

x (w 2 - w.:_)/w 2(w 2 -w~) is small compared to 

unity, i.e., if w 2 is close tow! or tow:_, 

(3I) 

n22.3 = Ao (- 1 + ~ / 1- 4s2AlBo) /2A s2 fc2 - ; c2A2 1 • 
0 

In the limiting case I A 0 I » sl c (31) leads to 
(28) and (30). For I A 0 I« sic we obtain* from 
(31) 

(32) 

(27) The second solution given by (31) will be negative 
in this case. 

then from (25) we obtain approximately, 

(28) 

Since B 0 ( w) "> 0 for w 2 "' wi, then n;-> + oo as 
2 

w 2 -> w!(or w_) from the direction w 2 < w! (or 

w 2 < w:_) and n; ->-ooas w 2 -> w! (or w:_) from the 

direction w 2 > w! (or w 2 > w.:_). However, for 
very small values of A 0 the expression (28) for 
n; no longer holds, since it was obtained under the 
condition 

(29) 

The condition (29) means that the terms which were 
discarded in (24) in order to obtain (28) are small 

4. THE CASE OF RESONANCE 

Let us now examine the case of resonance 
w "' ww Assuming that in the integrals occurring 
in the expressions for Eik in (IO) 

and consequently that 

~ e-Y2 

~dy~--1·..,. z1-y ~ .. , 
c 

we obtain, neglecting terms proportional to ( ka)2 

or to z 1, 

* Fore=' rr/2, (32) gives Gershman's result6 • 
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1 v I . VI -;}-11: v 
C:u = 8 22 = - - 1 l ,..---=-~ · 4 - T (ns 1 c) cos 0 ' 

(33) 

" . v 
~12 = - "21 = l T 

Vr 3n v 
- 8 (ns 1 c) cos 0 ; 833 = 1 --v; 

We now substitute these expressions into the 
dispersion Eq. (12) under the assumption that n is 

small) and retain terms proportional to c/s >> l. We 
then obtain 

(34) 

n~.2 = n; = sin-26 [1 + 1/ 2 sin2 6- v ± 
± V(l + 1/ 2 sin2 (J- v)2 - sin2 (J (1- v) (2- v)]. 

In the next approximation we find 

(35) 

A _. V8 scosO 
Ll.+ -l ---

- 3n en± v (36} 

X [1-(114sin20+cos26)v]n~ -[(I-v)(l-114v)(l+cos 28)-Hl-1f2v)sin28)n~ +(1-v)(1-1f2v) 

2sin2 en; + 2v - 2- sJn2 6 

Thus, the electromagnetic waves are damped when 
w "" ww The order of magnitude of the damping 
coefficient is equal to s/ c, i.e., it is appreciably 
larger than the usual thermal correcti.:lns to the 
indices of refraction of the ordinary and the extra­
ordinary waves which are proportional to s2/c2. 

As the angle e is decreased n 1 "" n+ increases 
( n ~ -> 2 ( 1 -v) e-2 ]; however' for small values of 
e one cannot use expression (34) for n i, since it 
was obtained under the condition 

6 ~ v-'1. v'il - v 1 (sf c)'t., 

which means that the terms in the dispersion equa­
tion which are proportional to c/ s are the largest 
ones. 

5. LONGITUDINAL PLASMA OSCILLATIONS 

Let us now consider in greater detail the prob­
lem of the longitudinal plasma oscillations. As is 
well known 4, in the presence of a magnetic field 
the electromagnetic waves in a plasma cannot be 
separated into stricti y longitudinal and transverse 
ones. However, in the lin,iting case n >> 1 we can 
distinguish a longitudinal plasma wave, the dis­
persion equation for which may be written approxi­
mately in the form: A ( w, k) = 0. 

Substituting (9) into (13) we reduce this equation 
to the form*: 

* We note that (37) may be obtained directly by start­
ing with the kinetic equation and with the equation 

divE= 4rre J fdv. 

(37) 

21t 

+ ( 1 - e2rti(1 rl ~ ei<X sin t!>+it><Vd~} dv = 0, 
ij 

where 

w' is the complex frequency [we have replaced w 
by w' in ( 9)]. In the future we shall take the propa­
gation vector k to he real. Equation (37) then de­
termines the frequency w and the damping y as 
functions of k. 

Making use of relation (l 0), and carrying out the 
integration over the angles in (37), and then over 
v., we finally obtain 10 

where I ( f.1) is the modified Bessel function. 
n 

For k x = 0 ( f.1 = 0) the dispersion equation (38) 
has the same form as in the absence of magnetic 
field5, i.e., the magnetic field has no effect on 
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plasma oscillations being propagated parallel to 
it. 

In the case of "low" temperatures of the plasma, 
when p.. << l by expanding the functions In (/1) 
and e-ll in powers of J1 and by using the asymptotic 
expansion of the integral 

1 \ e-Y' t ( 1 3 ) 
V - --dy ~ - 1 + 22 + 44 + ... 

7t • z- y z z z · 
c 

(39) 

we obtain 

k 2 2 ( 1 3 ) a--+--+ 
2z~ 4z~ · ·· 

(40) 

[ Zn ( 1 + '1 + 1 1 ) 1 ] -[L--- --+--1--
2 zl z_l 2z3 2z3 2z2 

1 -1 0 

2 [ Zo ( 1 + 1 4 4 ) 3 1 
- [L 8 z; z -2 - z; - z_ 1 + 4 J 

+ ... + i y;-z0 [ ( 1 - [L + ! [L 2) e-z~ 

+ ~ (1- tL) (e-zi + e-z:._l) 

If we neglect the thermal motion of the electrons 
then (40) reduces to the dispersion equation of the 
hydrodynamic approximation 

Q2 Q2 
1 -- cos2 0- sin2 fJ = 0, 

w2 w2-w~ 

from which we obtain the characteristic frequency 
of plasma oscillations in the hydrodynamic approxi­
mation3: 

(41) 

Taking into account that ka << l, we look for the 
solution of the dispersion equation (40) in the 
form 

0 For the corrections E +to the characteristic fre­
quencies w 1 , 2 , we obtain the expression 

(43) 

Thus, in the case of low plasma temperatures 
( w8 >> ks, "strong" magnetic field), there ex­
ist two characteristic frequencies of plasma os­
cillation, which are determined by Eqs. (41)-(43). 
We obtain the damping which corresponds to these 
frequencies by taking into account in Eq. (40) 
terms which are exponentially small: 

(44) 

V--;; w2,__ 1 

11,2= 8 n (ka) 3 cos 6 [1+02w~ sin26 1 (wl- w5JJ2J 

X { exp {- w7 ,2/2D.2k2a2 cos2&} 

Expression (42) was obtained under the condi­
tion lzn I» l(IE+I « l). lf0--.0, then w 1 

"'w+->w8 (forrl<w8 ), andw 2 oew_-.w8 (for 

n > WH ). In this case the inequality I z l I » l is 

not fulfilled, and the expressions (42) no longer 
hold. From the condition I z 1 I >> l (or from the 
condition IE ±I« l), we find that the applicability 
of the Eq. (42) for w l with WH > n and for w2 with 

w8 < Q is restricted by the condition 

(45) 

A unique solution w "' n exists, as may be seen 
from the exact dispersion equation (38) for e "' 0 
and ka << l. 

If WH < D, then for certain WH and U there 

exists an angle 0 = em' for which the frequency 
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w 1 , detern1ined by (41), turns out to be an in­
tegral multiple of wH: 

w1 = mwH (m = 2, 3, ... ). (46) 

However, the dispersion equation (40) was itself 
obtained under the assumption I zn I >> 1. There­
fore, one cannot use expression (42) at angles 
close to em. if (46) holds for these angles. In 
order to obtain a dispersion equation which is 

valid for e"' em' one should retain the m th in­
tegral in (38), and one should use for the other 
integrals the asymptotic expansion (39), as was 
done earlier: 

k2 2 1 [ Zo ( 1 1 ) 1 J a ---[L - -+- -
2z2 2 z1 Z-1 • 

0 

(47) 

e-y• 
+. •.- ( ~ r m! ~·;t ~ Zm- Ydy = Q. 

c 

ue 
m is not close to rr/2, then assuming that 

y· 
jzml~1, ~/-·ydy:::::::_-ir:, 

C m 

we find UJ'= mUJH- iym' where 

(48) 

Jtr;tm4 sln2m6 
"[ m = _2_m_+-;-',.,-1•_3_m __ -;c,l:-zn_z_! c-o-s~3 _6_(_1-,-,_-m-4:--(m-2~-1 )-=:-2-t-g ~::-" -6)-

(m=2, 3,., .). 

Thus the waves with frequencies which are in­
tegral multiples of UJH are strongly damped for e 
not close to rr/2. The damping coefficient y is 

· 2 4 m proport10nal to (ks/UJH) m- and decreases as m 

increases. For m = 2 the damring exceeds in order 
of magnitude by a factor ( ka )-l the usual thermal 
corrections to the frequency. 

If em "' rr/2, then assuming that 

~ y· v-e- " d rr 
z - y Y= z-, 

C m m 

we obtain 

U) = mwH + 8m, 8m 
(49) 

Thus, fore= rr/2 and for a given magnetic field, 
longitudinal waves with frequencies in the range 

mUJH - fm < UJ < mUJH + fm cannot be propagated in 

the plasma. The width of the "gap" 2fm decreases 
as m increases. Gross 4 has pointed out the ex­
istence of such "gaps" and has computed the value 
of f 2 • 

Finally, if (JJH "'n, Eqs. (42) are not applicable 
for small e, since in such a case the condition 
I z 1 I » l is not fulfilled. In this case the exact 
dispersion equation (38) takes on the form 

0 2 62w (' e-Y' (50) 
1 - w2 - 2 V 2 kan V TC J z1 - Y dy = 0 · 

c 

Assuming that I z 1 j « l we find that 

(51) 

i.e., for UJH = {! the plasma wave of frequency 
UJ = Q "' UJH is strongly damped. 

In the case of a weak magnetic field ( (JJH << n) 

Eq. (37) can be brought to the form 

by means of integration by parts. 

Solving this equation by successive approxima­
tions (I z I >> l ), we find the frequency UJ and the 
damping y of the plasma oscillations in a weak 
magnetic field 

- :::_ _••_ H -w'/2k'a'fl' V-- r. ' w2 sin2 6) 
1- 8 (ka? ( 1 + 4!(Aa)·Q2 e • (54) 

Expressions (53) and (54) agree with the results 
obtained by Gordeev5. For UJH = 0 we obtain from 
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thisVlasov'sformulaforthefrequency 1 and Landau's 

formula for the damping* 

In conclusion we express our sincere thanks to 
Prof. A. I. Akhiezer for his attention, for his as­
sistance, and for the detailed discussion of the re­
sults of this work. 

* We note that in the expression for y obtained by 
Laodau 2 the factor e- 312 is missing. 
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Investigation of the Be9(dn)B 10 Nuclear Reaction 
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]. Exptl, Theoret. Phys. (U.S.S.R.) 31, 652-656 (October, 1956) 

An investigation is carried out on the reaction between the nucleus of beryllium and a 
deuteron in which the latter is captured by the nucleus and the unpaired neutron is ejected, 
The effective cross section of the process and the angular distribution of the freed neutrons 
were found. The comparison of the angular distribution with experimental data results in a 
satisfactory agreement for small angles up to 70°. 

l THE model of the Be 9 nucleus,according to 
• which the unpaired neutron moves in the field 

of the nuclear remainder Be 8 , was applied by many 
investigators to the problem of the electron and 
photoelectric disintegration of this nucleus 1- 3 • The 
success of this model is determined first by the , 
weak binding of the unpaired neutron in the Be 9 

nucleus, considerably smaller than the mean bind­
ing energy per particle , and second, by the rela­
tively long life of the Be 8 nuclear remainder rela­
tive to the decay into two u..-particles. The current 
research is dedicated to the investigation of the 
Be 9(dn)B 10 reaction on the basis of this model 1 • 

It is customarily assumed that the ( dn) reaction 
can proceed by the formation of a compound nucleus 

and stripping of a proton by a nucleus from a deu­
teron passing nearby. Calculations on the basis 
of the compound nucleus model are often not feasi­
ble in actual cases because the line widths of the 
corresponding processes are unknown; therefore, 
most of the theoretical investigations of the ( dn) 
reaction are made from the point of view of the 
stripping process. The corresponding angular dis­
tributions of neutrons are then determined on the 
basis of Butler's theory 4 • When there is no agree­
ment between this theory and experiment it is 
pointed out that in such cases the reaction does 
not proceed by stripping, but by the formation of 
a compound nucleus, which then undergoes various 

cascade transiti'Ons. 
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(This causes a corresponding change in the 

numerical coefficients in the expressions that 

result from the calculation of the effects of 

the plasma particles on each other) . 
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v l (lfJF0jfJx) + ... 
where E l is the pro­
jection of the electric 

field E on the direc­

tion 1 

A= 0.84 (1+221A) 
Tl2o4, 206 

... to a cubic relation. 

A series of points etc. 

where the bar indi­
cates averaging over 

the angle e and E l is 
the projection of the 
electric field E alodg 

the direction I 

A= 0.84/(1+22/A) 
11203, 205 

... to a cubic relation, 

and in the region 10 
- 20°K to a quadratic 

relation. A series of 
points 9, coinciding 
with points 0, have 

been omitted in the 

region above l0°K. 


