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Interaction between an "excess" electron in an ionic crystal with optical and acoustical 
vibrations of the lattice is considered. Account of interaction with acoustical vibrations 
leads to a reduction of the energy of the system and to a change in the effective mass of 
the current carrier in comparison with the polaron. The wave functions, the energies of the 
ground and excited states of the F-centers and the parameters of the F-absorption band are 
computed with account of the "condenson" interaction. A comparison of the polaron and 
condenson effects in ionic crystals is given. 

T HE INTERACTION of the "excess" electron 
with optical vibrations in an ionic dielectric 

leads to the appearance of "polaron" states. 1 The 

effective mass of the current carrier in such crys

tals- the polarons- can uiffer appreciably from the 
effective mass of the "band" electron. In polaron 

theory the interaction with acoustical vibrations 
was not excluded in the zeroth approximation, but 

was considered as a reason for the scattering of 

polaron waves. 2 As an excitation potential, use 

was made of the micropotential assumed by Bloch, 

Brillouin and Bethe. 3 Such a consideration is valid 

for those crystals in which the corrections to the 
energy (as a result of consideration of the interac

tion with the acoustical vibrations of the lattice) 
are significantly smaller than the spacing of the en

ergy levels of the polaron. However, the effect of 
the interaction with acoustical vibrations of the lat

tice is not small in a whole series of ionic crystals 

with strong homopolar coupling. Hence, considera-

tion of this interaction in the zeroth approximation 
of the theory is a necessity. 

Such a consideration is given below. We chose a 

potential of the deformation type as the interaction 
potential for the electron with the acoustical vibra

tions of the lattice. This potential was hypothe

sized by Pekar and one of the authors of this paper,4 

and is the condenson potential.* The energy terms 

and wave functions of the system were computed by 

the variational method and by an adiabatic approxi
mation. The effective mass of the current carrier 

was computed; it differs from the effective mass of 

the polaron. In this same approximation, the quan
tum states of the F-center were considered and the 
parameters of the F-absorption band were obtained. 

A comparison of the magnitude of the condenson and 

polaron effects in ionic crystals is given. 

*This potential was proposed independently by Bar
deen and Shockley.' 0 
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1. HAMILTONIAN OF THE SYSTEM. GROUND 

STATES OF THE CRYSTAL WITH AN •EXCESS" 
ELECTRON (VARIATIONAL METHOD) 

Making use of the results of Refs. 1, 4, 5, the 
Hamiltonian of the crystal- "excess" electron sys
tem can be wdtten in the following fashion: 

h 1i2 h h 

H = - 2 ·Ll + Vp(r) + Vk (r) + Hop 11 + Hac• 
~0 (1) 

V () = \P(r')(r-r') d, 
P r e J Jr-r'la " (2) 

P (r) is the inertial part of the separate polarization 
of the dielectric by the field of the electron: 

vk (r) =a (uu + u22 + u33), (3) 

Ukk are the diagonal ~omponents of the deformation 
tensor o:f the dielectric; a is the coupling constant 
of the electron with the acoustical vibrations of the 
lattice; ,g opll and Hac are the Hamiltonians of the 
longitudinal optical and acoustical vibrations, re
spectively, of the lattice; flo is the effective mass 
of the band electron. In Eq. (l) we have omitted 

the Hamiltonian of the transverse optical vibrations 
of the lattice, since, in the macroscopic approxima
tion used here, the electron is not excited by these 
vibrations. 1 . 

The Hamiltonian ( 1), after substitution of (2) and 
(3), can be transformed to 

(4) 

where qk, qxct are the generalized coordinates of the normal vibrations, k and x are the number of the opti
cal and acoustical vibrations; w is the limiting frequency of the optical vibrations; Wx,a are the frequen
cies of the corresponding acoustical vibrations, a is the number of the acoustical branch of the vibrations. 

The ground state of the system is determined from the absolute minimum of the functional 

H=~':P'*(r ... qk ... q,_rx)H ':P'(r ... qk ... q,_r~.···)d-cdq1 dq2 , dq 1 =ITdqk; dq2 =ITITdq><:x (5) 
k iX X 

with the additional normalization condition 

The minimized function is put in product form: 

(6) 

Substitution of (6) in (5), and variation with respect to <I> and to Fa lead to a system of equations for <I> and 

Fa 
(fHk) <P = )JD; (~H,") F" =A" Fa. 

H k = } nw [(qh- qV2 - iJ21 aq~J- 8: D~ [•\JJ, 
1 a2 2 2 0 1 f2 Hx:x = 2 hWxr~. [(q,_rJ.- q~y- 02 I aq~rJ.]- 2PK-x [~]cos .X ", 

(7) 

q~ = (c 14o.nw/1' Dh [~], q~" = (phw,")-'1• aK-x [~]cos 6"' If"'' 

c = 1/n2 - l/c; sis the dielectric constant of the crystal, n =optical index of refraction; fa= 4->xallxl; 

p =density of the crystal, ea is the angle between the vectors :"G and qxa: 



INTERACTION BETWEEN CURRENT CARRIERS AND F-CENTERS 1127 

Xk and Xx are basic functions to which the expansion of the vectors of the specific polarization of the di

electric P(r) and the displacement of the medium u(r) reduce. 1 

The eigenfunctions and the eigenvalues of Eq. (7) have the form 

<D=IJexp{-; (qk-qV 2}Hnk(qk-qV, E=nw~(nk+ ;)- 8:D~[·fJ, 

Fex=llexp{- ~ (qxex-q~ex)2}Hnx(q,",-q~) (9) 

" 

nk and nx are the quantum numbers of the oscillators, Hn are the Tschebycheff-Hermite polynomials of 
order n. 

Use of Eqs. (9) allows us to represent the functions fi in the form 

H = J [~] + hw ~ ( nk + } ) + ~ nWxex ( nx + D, 
k xcx 

where ] [t#] is a function depending only on t#(r): 

J [~] = 21L:~ ~I Vlji 12 d-e- 8: ~ D~ ['f] - ~: ~ r;;2 cos2 Sex K:_x [~]. 
k xex 

(lO) 

(ll) 

The procedure for further calculations requires a knowledge of the explicit form of the dependence of the 
quantities cos ea. and fa. on x. For crystals with a lattice of the type NaCl, these dependencies can be 
found by making use of the results of Tolpygo. 6 It follows from his work that 

2 [(kl+k2scx)z-(ka+k4s,,)J2 

COS Sex = Y ex (k1 + k2sex)2 + (k3 + k,sex)2 - 2z (k1 + k2sa) (ka + k4sa) 

Here k1, k2 , ••• , z are constants depending on the parameters of the crystal, 

sa. is a root of the cubic equation: 

n~/(n;-s) + n~j(n~-s) 
+ n; I (n;- s) + z = 0. 

The roots sa. (a. = 1, 2, 3) correspond to the three 
branches of acoustic vibrations: 

J.L is the reduced mass of the two ions of opposite 
sign, d is the shortest distance between them; 

Jli = mJJ.L (i = 1, 2), mi is the mass of the ion, a 11 

and a22 are functions of the parameters of .the crys
tal; 

v~ = 1 + 2zsa. 

It is appropriate to approximate the quantity 

B = ]Ba =] v;;2 cos2 Sa ( 12) 
ex ex 

by the expression 

(13) 

where Yi is a spherical function which is invariant 
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relative to a rotation about the coordinate axes by 
rr /2, and reflection from the coordinate planes. 9 

The coefficients Ci were determined by compari
son of Eqs. ( 12) and (13) at five different points. 
The smoothness of the approximation is verified at 
seven other points. 

The chosen approximation gives an error of the 
order of 10%. Changing from summation to integra
tion in Eq. ( 11), we can write 

00 rt/2 21t 

- ~i~a ~ K_:-x [ljl] x2 dx ~sin &c{& ~ B (&, cp) drp, 
0 0 0 

L 3 is the volume of the fundamental cell of the 
crystal. J [ljl] is minimized with respect to ljl(r) by 
means of the approximating function 

Use of (14) and (8) and rather tedious calcula
tions permit us 'to determine J [ljl] as a function of 
the parameter a of the approximation: 

J r 1 _ 1 {3!2 2 3 2 2 [L lQ 0d 437 31 
o I)( - 1-4 -- o: - e CO( -a --2- 2----g---7 2 I)( f• 

J.Lo pe • 1t 

1t /2 21t 

Q0 = ~ sin&d& ~ B(&, 'f) d'f. (15) 
0 0 

The extremum condition d]0 / da = 0 allows us to 
find the expression a corresponding to a minimum 
of the functional am: 

l)(m = h 2e2go (I-YI- fl-oC I h4go), 0 6) 

g0 = (29 • 7;:2 I 437) pI p.a2p.0Q0 ld. ( 17) 

Expre:ssions (15)- (17) determine the minimal 
value of the functional. 

The above calculation can be carried as far as 
numerical results only for certain crystals, for 
which the dependence of fa and cos &a: on xis 
known. Therefore, the approximate consideration 
of the ground state of the current carrier in polar 
crystals is of interest, under the assumption that 
the crystal is isotropic. In this case, using the re
sults of tl.efs. 1 and 5, we can write the function 
J [ljl] in the form 

(18) 

Here K and J1 are the moduli of uniform compression 
and shear. respectively. 

Using Eq. (14) as an approximating function, we 
get 

3 ! 2 3 437 a2 

J 0 I I)(] = 14 [L;;' 1)(
2 - 14 e2co: - 49. 297t (K + 4[1. / 3) o:3 • 

(19) 

The condition d]0/da = 0 leads in this case to an 
expression for am analogous to Eq. ( 16), but with a 
value of g0 different from Eq. (17): 

2. ENERGY OF THE FUNDAMENTAL STATE AND THE WAVE 

FUNCTION OF A SYSTEM IN THE ADIABATIC APPROXIMATION. 

EFFECTIVE MASS OF THE CURRENT CARRIER. 

In the adiabatic approximation the energy of the system is computed in two ways: first, the configura
tion of the ion~> is fixed by giving the totality of the normal coordinates Pk; uk or qk> qx. The state of the 
conduction electron corresponding to this configuration is determined by the equation 

(21) 

Here VP(r) and Vk(r} are expressed by Eqs. (2) and (3). The value of E0 which is found enters as a c~m
ponent part in the energy of the "heavy" subsystem. 

It is appropriate to replace Eq. (21) by the equivalent variational principle 
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The total energy of the conduction electron in the longitudinal acoustic and optical vibrations is equal to 

H = E0 ( ••• Pk ... u,_ ... ) + Hop + Hac· (22) 

Solution of the Schrodinger equation with Hamiltonian (22) is very difficult in the general case. How
ever, it is possible to find the solution for the equilibrium configuration of the ions, for which the poten
tial energy of the ions is a minimum. This potential energy can be written in the form 

"" 21t p2 p "" F (·~ ... Pk ... u,_ ... ) = E 0 ( ..• P,_ ... u,_ ... ) + .LJ c k + 2 .LJW~ U!· 
k k " 

Here the second and third terms are the potential energies of the optical and acoustical vibrations of the 
ions. Let us assume that the crystal is isotropic. 

~linimizing F with respect to Pk and ux,, we get 

(23) 

Substitution of (23) reduces F to the functional J [ljl] [Eq. (18)] which depends only on !/J(r). Minimizing 

f [ljl] was carried out above. The solutions obtained refer to an electron in a polaron-condenson well,* the 

center of which is at the origin of the coordinates. However, the current carrier can be localized at any 
point of the crystal. For a polaron-condenson with center at the point ~. the equilibrium solution is ob
tained by a translation of the quantities ljJ 0(r), P0(r), u0(r), Vp 0 (r) and Vk 0(r) through the vector f In com
plete analogy with Ref. l, we represent the polarization P and the displacement u at an arbitrary point in 
the crystal in the form 

P (r) = P0 (r- £) + P' (r); u (r) = U0 (r- £) + u' (r), 

where P '(r) and u'(r) can be regarded as small perturbations of the polarization and displacement, respec
tively, at those places in space where the polaro-condenson is localized, and where the terms P0(r- {) 
and u0(r - ~) are large. In the rest of space, far from the polaro-condenson, P 0(r - 0 and u0(r - g) are 
small and the polarization and the displacement are defined by the vectors P'(r) and u'(r). In the zeroth 
approximations, the terms P'(r) and u'(r) are omitted; then the solution of Eq. (21) will be !/J0(r- ~). In
troducing the terms P'(r) and u(r) as small perturbations, and making use of perturbation theory, we com
pute the energy of the electron in the first approximation. It is shown to be equal to 

E ( ... pk ... u,_ ... ) =2~ \ JV•p 12 d't- \ p (r) Do (r- s) d't +a~ Uxl )(I K-x (~). 
~oJ J x 

(24) 

K-x (~) = - ~ ['~ 0 ~r- ~)]2 X_,_ (r) d't. 

Substituting Eqs. (23) and (24) in Eq. (22), and making use of the relation 

w! = (K + 4p. 1 3) x2 1 p, 

we get 

(25) 

Introducing the notation 

2-p2 I c ,.,2 2 . u2 I 2 2 . 2 p2 I c 2 2 . 
" k ·k ~" = Cflli<• P ,_ = <fzk• " k~ kwk = <flki;• (26) 

* Such a development will be called hereinafter a polaro-condenson. 
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we can rewrite Eq. (25) in the form 
2 

~ ~ 9ak w!k ocp"k~ I o~; = o. 
" k 

(28) 

H = J ['f] --J-- ~ ~ [~!k + ('Pak- 'P<>k~)2 (l)~k]. 
a-1 k 

Transforming to canonically conjugate coordinates, 

We can determine ~ in another manner; let us ap
proximate Cf!a. by the function Cf!a.( by means of the 

gak=rfakV2;nw"k; qak=cpakV2w"kln 

and replacing K:xk by the operator -ia/aqa.k' we get 

method of least squares, and so choose ~i that the 

integral ~ ~ ( 9"- 9"~)2 d't will be a minimum. In 

this case, in place of the condition (28), we get 

(29) 

H =J[•f] a k 

+ ! ~ ~., f( )2 .:::!2 I.:::> 2 (27) 
2 2.j 2.J nwak qak- qak~ - u uqa<k]. 

a=l h 

In a way similar to that used by Pekar, 7 we select 
(for the determination of ~) an equation intermedi
ate to (28) and (29): 

\Ve can determine the quantity ~' which enters 
into Eq. (27), from the condition 

oE ( ... pk. '. Ux ..• §)I 0~; = 0 (i =I, 2, 3), 

which, with the use of the notation (26) and Eq. 
(23), can be written in the following form: 

] ~ 9ak (!)a<k O!.pa<k~ I 0~; = 0 
a k 

or, in normal coordinates 

] ] qak oqak~ I 0~i = 0. 
a k (30) 

By use of the method developed by Pekar, we can obtain a series of auxiliary relations which are neces
sary for what follows. 

Defining the operators W1k and w2k by means of the relation 

we can show that 

] ~ rC:~·Cfla (r- ~)J[C:~·cp" (r- ~)] d't =]\'PO( (r) c:~ 'fa (r) d't, 
a a J 

'/Je differentiate this equation with respect to ~;, recalling that n1 = n2 = n/2: 

and then differentiate with respect to ~i: 

~('a'Pa(r-~) a~~'Pa(r-~) ~\a2<p(X(r-~) An (n) 

~) a~~ a~i =-~~ a~;a~i wa;cp"(r-~)d't=Oii. 

Thanks to the spherical symmetry of the functions ya (r) and c:~ cpa (r), OI'F= Oji o<n). The total differential 
of Eq. (30) is then 

It is easy to show that 

3 

~ dqak oqak~ I o~~ + ] ~ q ak (o2q"k~ I o~~ o~ i) d~i = o. 
ak ak i=l 

] ~ q ak 02q ak'f. I 0~ i oE j = - f 0 ij o<l) • 

<>k j 

(31) 
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Here we can transform Eq. (31) to the form 

or 

These formulas allow us to establish the validity of 
the following equations: 

3 a~l a~j a2 - 1i20(2) a, a2 

~ ~ fiWcxR. aqrxh. aqrxh. a~i a~ 0 - 2 (0')2 ~ a~~' (32a) 
rxh. /-1 I i-1 I 

(32h) 

In the case of spherical symmetry of the function 
%:.• Eq. (32h) will vanish. 

The solution to Schrodinger' s equation with oper
ator fJ is sought in the form 

1J!' (. •. qrxh.. • .) 

= U(~1• ~2• ~a)exp{- ~ ~(qrxh.-qrxh.!l}• 
rxh. 

the qCJ..k enter directly into 'l', and are also contained 

in the ~~- We denote by a~ differentiation only qrxh. 
with respect to the qCJ..k which do not enter into the 
~~- In this case, 

a2 a2 a~ 1 a~1 a2 
---a-q2 = a•q2 + aq "aq "a~ 0 a~ 0 rxh. rxh. CX« rx,. ' I (33) 

Taking (30) into account, we can show that 

a2 'Y 1 a~~ a•qrx" = o, 
a2 'Y I a*qa" a~~= 'Yaqrx~<"<.f a~~-

(34) 

Considering Eqs. (27), (32a), (32h), (33) and (34), 
we get 

{ 1 3 o<2> 1i 2 ~ 
H'Y = J ['f] + 2 ~ fiWrxR.- 2fi Q{1)- 2/\1 fl~J '¥, 

rxk 
M = 2(01) 2 10<2>. 

Thus the energy of the ground state of the polaro
condenson is 

H = J ['fo] + ~ s fiWrxR.- 3l2n (0(2) I o<1>). (35) 
rxk 

It is easy to verify that for the polaron in the ab
sence of dispersion of the optical frequencies, Eq. 
(35) takes the form 

\1-3 
H = J ['fo] + - 2-nw0 , 

which coincides with the result of Ref. l. Here v 
is the general number of polarized longitudinal nor
mal vibrations of the crystal in the volume U. 

Computation of the integrals o<I) and o<2> per
mits us to express the effective mass of the polaro
condenson explicity in terms of the parameters of 
the crystal. The integrals pertaining to the optical 
vibrations were computed earlier. Computation of 
the integrals pertaining to the acoustical vibrations 
lead to the following expression for the effective 
mass of the current carrier in an ionic crystal: 

_ [437o7lht2ce2£2+183°12Sa2V£p wapaa _2 

M- 147ob4r:Bw2£J (4~o4071t'ce2E -t- 4Jo'l47a2a") lO ' 

where CJ.. is determined by Eqs. (16) and (!l)), E = K 
+ 411/3. 

3. INTERACTION OF THE ELECTRON OF THE F-CENTER 
WITH THE ACOUSTICAL VIBRATIONS OF THE LATTICE. 

COMPARATIVE ESTIMATE OF THE POLARON AND 
CON DENSON EFFECTS IN IONIC CRYSTALS. 

The Hamiltonian of the F-centers-crystal system, analogous to Eq. (4), can he written in the form 
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The result differs from Eq. (4) by the term -ze2/8r, which represents the energy of interaction of the elec
tron with the Coulomb field of the defect. 

With the aid of computations similar to those carried out in the first part of the work, we obtain for the 
energy of the ground state of the F-center in c~ystals of the type NaCl an expression similar to Eq. (10), 
in which J [t,U] is equal to 

Making use of the function ( 14), we obtain 

1 {31L2 2 3e2 2 vl Qod 437a3} J(rx.)=- ---rx. ---(3z+sc)rx.-a ----
14 !J.o e: pe2 "2". 7 rr:2 ' 

(36) 

(37) 

where g0 is defined by Eq. (17). 
Calculation of the 2p state of the F-center is performed in an entirely similar way; the approximating 

function was chosen in the form 

( ) P.'f, -'[, -[lr <> 
~2p r = .., "- e r cos v. 

The energy of the excited state is determined by the expression 

H1 = J [~] + hw ~ ( n~ + } ) + ~ hwx" ( <" + ~), 
k X.CL 

where 

(38) 

rr/2 2rr 

Qk == ~ cosk & sin &d& ~ B (&, '?) d'P, g1 = 29;;:2p / 3p.0a2p.ld (14Q0 - 42Q 2 + 45Q4). (39) 
0 0 

According to He£. 8, the frequency of the maximum of the absorption barrd of the local centers is computed 

from the equation 

(40) 

The half width of the corresponding absorption band, in the limiting cases of high and low temperatures, 
is determined by the expressions 
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where 

a - '\.""' (q0 _ qo )2· cr _ _..!._ "'-l (qo _ qo )2 w . 
0 - .L.J Ills k2p ' 1 - 2 .L.J xrx1s X>2P "'" 

cr - .!._ ~ (qo _ qo )2 w2 
2 - 2 ..L.J ><cxls X?.2p "" • 

k "" ""' 
The quantity ao"frw/2 was computed in He£. l; calculations that are cumbersome, but that present no diffi
culties in principle, let us determine 1ia1 and 1i2a 2 : 

a2u.[da3 { <137 1 1 ,_ 
1icr1 = 2~2pc2 2"_ 49 Qo + 2" Vii (14Q 0 - 42Q 2 + 4oQ4 ) 

- 28 (v1+1)1 [(7v4 + 49v3 + 66v2 + 28v + 4) Q0 - 3v2 (7v 2 + 49v + 12) Q2l}, 
(42) 

_ .±_ J (21vs + 288v6- 270v4 - 48v2 + 9) Q~ -12( 7v8 + 192v6 + 165v4 - 4v2 ) Q~ 
7l 6(v2-1)6 

+ ~221 ~)~ [(-9v6 - 3v4 + 13v2 - 1) Q~ + (54v6 + 150v4 + 38v2 - 2) Q;l}], (43) 

where 
1t)2 21t 

v = rt. / ~; Q~ = ~ cosk & sin &d& ~ (L Bav:x) dq;. 
0 0 " 

In the approximation in which the crystal is considered isotropic, Eqs. (36), (38), (42), and (43) take the 

form 

3'h2 3e2 437 a2 

J[r~-] =14flor~-2 -14e(3z+sc)r~--49·2"7t (K+4iJ./3) r~-3 , 
'fL2 e2 9 a2 3 

J[~] = 2(.lo~2-:re;(z+0,3914:oc)~-297t(K+4fl/3)~, 

a2a3 { r:: 27v2 + 14v + 2 . 1 r:: } 
1icr1 = K + 41-l 1 3 0,0055o- 0,0227 (v + 1)7 + V3 0,00o60 , 

(44) 

1i2cr 2 = V .. a2a4 {0,00540 + 0,00704 ~ + 0,00965 ( 2 
1 

1)7 [(v2 -1) (7v 8 

p (K + 41-l 1 3) v v -

+ 480v6 + 930v4 + 32v2- 9)- 12v2 ln v (27v6 + 141 v4 + 77v2 - 5)]}. 

Here rx is detenuined from (37) and (20), and f3 from 
(39), but with a different value of g 1 : 

The theory contains two parameters, a and flo· 

Their determination is possible by comparison of 
the theoretically computed values of o and 1iilmax 
with the corresponding experimental parameters of 
the F-band. 

The best agreement of the theoretical and experi
mental uata for the alkal·i halide crystals, consid-

ered in Ref. l, is obtained if we set a = 0, which 
demonstrates the small value of the condenson ef
fect in these crystals. 

Unfortunately, the absence of a complete set of 
experimental data for other crystals compels us to 
limit ourselves only to estimates. 

The most favorable of the crystals known to us in 
regard to the experimental data is Cu20. But even 
here information is lacking on the dispersion of the 
vibration frequencies of the lattice. For this reason, 
we restrict ourselves to a comparative estimate of 
the polaron and condenson effects in the approxima-



1134 M. F. DEIGEN AND V. L. VINETSKII 

tion in which the crystal is regarded as isotropic. 
Availing ourselves of the data 9 for F bands, and of 
the expressions (40) and (41), we can determine 
14J/m and a approximately: 

l~olm ~ 0.9; j a i = 7 eV. 

From these parameters we estimated the polaron and 

condenson tenns in (19) and (44). It turned out that 
for the polaro-condenson the magnitude of the con
denson term amounted to about 10% of the total en
ergy, while for the F-center, to about 25%. 

The values of the effective masses of the bound 
electron and the current carrier change appreciably 
in comparison with the corresponding values ob
tained without regard to the condenson effect. Thus 
14J/m appeared to be two times smaller than the 
value in Ref. l, while M/m = 7.63 instead of 9.69 
as in Ref. l. 
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Dispersion Relations for Photoproduction of 
Pions on Nucleons* 

A. A. LOGANOV AND A. N. TAVKHELIDZE 
(Submitted to JETP editor July 24, 1956) 
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Dispersion relations are derived for pion photoproduction reactions on nucleons. The 
.spin and isotopic structure of the reaction amplitude is established, and the unobservable 
energy range is separated. It is shown that the dispersion relations are inhomogeneous. 

FORMAL SCATTERING THEORY, based on the 
unitarity and asymmetry of the scattering ma

trix, leads to an expression for the amplitude in 
terms of phase shifts. The values of the phase 
shifts depend on the dynamics of the collision proc
ess. Since the character of the dynamics of the 
process is not taken into account in the formulation 
of the formal scattering theory, it is natural that 
the values of t:he phases remain unknown in such an 

analysis. The determination of phase shifts from 
experimental data is of great interest, for it permits 
a deeper study of the character of the meson-nucleon 
collisions. Using the charge-independence hypoth
esis in the s- and p-wave approximation it becomes 

possible to find several possible sets of phase 

*Paper delivered at the All-Union Conference on 
Physics of High Energy Particles on May 15, 1956. 

shifts for the meson-nucleon collisions. This am

biguity can be eliminated using the causality prin
ciple. In fact, Goldberger 1 has found the Hermitian 
and anti-Hermitian portions of the forward-scatter
ing amplitude to be connected by dispersion rela
tions that lead to a correct choice of phase shifts 
for the meson-nucleon collision processes. 

N. N. Bogoliubov* developed general principles 
for the derivation of dispersion relations for a great 
variety of scattering processes. His method is es
sentially based on analyticity theorems that follow 
from the principle of causality. 

In the present article we shall use the Bogoliubov 
method to derive dispersion relations for the photo
production of mesons on nucleons. 3 

*Reported by N. N. Bogoliubov to many seminars on 
theoretical physics in the v. A. Steklov Mathematics In
stitute in January 1956. 


