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duce into L 0 and L an infinitely small dissipation in 
order to prove this theorem (Sec. 3). 
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An expression has been obtained for the surface impedance of metals in the infrared re
gion without making any special assumptions concerning the law of dispersion of the con
duction electrons. 

l IN THE OPTICS OF METALS the most inter
• esting region, it seems to us, is the infrared 

region in which the frequency of the electromag

netic field satisfies the condition 

(1) 

Here v0 = 1/ -r is the collision frequency ( -r is the 

relaxation time), and Ct.!a is the limit of the internal 

photoeffect. * As shown in Ref. 1, for low temper

atures and for pure metals this region is known to 

be essentially: v0 "" lOu, Ct.! a "" 1015 to 1016 • Thus 

we talk of working at wavelengths on the order of 
ten microns. 

In this frequency region the electron gas is ap
proximately described by the dielectric constant 

s = 1 - 4rrNe2 j mw2 (2) 

where N is the density of free electrons and m the 

*The internal photoeffect which is due to the interac
Hon of electrons can occur at all frequencies; however, 
it principally occurs only for Ct.J > Ct.!a (7iCt.Ja is of the order 
of intervals between energy bands, "v I0-12 ergs). 

effective mass.* In other words, the electron gas 

"behaves" like an electron plasma. 

Since nz"' 4rrNe2/m "" Ct.J~, then in the frequency 
region of interest to us the dielectric constant of 

the metal is negative (c; < 0), and, its modulus is 

considerably greater than 1, i.e., 

The reflection of light from the surface of a metal 

in this case is, in principle, not connected with the 

ohmic loss and can be described by a purely imag

inary surface impedance 

*Note that according to the opinion of Ginzburg (cf. 
Ref. l) we put in formula (2) the mass of the free elec
trons. All resultant changes in N I m are due to the 
change in the electron density N. This, of course, can
not lead to contradiction, but, it seems to us, causes 
trouble in comparing optically measured constants of the 
electron gas with results of other experiments (galvano
magnetic, specific heat, etc . .). Moreover, if the calcula
tion is carried out with the use of the kinetic equation, 
it is natural that in formula (2) there should appear pre
cisely the effective mass (see below). 
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(3) and the Maxwell equations 

However, formula (2), and consequently also (3), 
are approximate. Ohmic loss, naturally, occurs but 
R = ReZ «X. 

The real part R of the impedance is essentially 
different in two cases, occurring for frequencies 
satisfying inequality (l): normal skin effect (o» l;· 
l = v-c, o = c/D): 

R = 2r.v0 jcD; (4) 

anomalous skin effect (o « l): 

R ---' 3rrv / 4c2 (5) 

(v is the limiting Fermi yelocity ). 

Formulas (3) to (5) were obtained on the basis of an 
isotropic quadratic dispersion relation ( 8 = p2 /2m; 
8, p- energy and quasi-momentum of the electron) 
without allowing for quantum mechanical effects. 
The latter are due to the fact that hw for low tem
peratures not only is not less than kT, but may pos
sibly be even considerably larger than kT. How
ever, Wolfe 2 has shown that the results of quantum 
mechanical and classical calculations of ohmic 
loss connected with diffuse scattering of electrons 
on walls coincide. True, one must bear in mind 
(especially when comparing formulas of type (5) 
with experiment) that the surface loss is not al
ways considerably larger than the volume loss.* 
For instance, according to Goldstein, 3 for 1iw »kEl, 
kT (El is the Debye temperature) the quantum losses 
are of the same order as given by formula (5). 

In the present article we obtain generalized for
mulas for the case of an arbitrary anisotropic dis
persion law: 8 = 8(p). Just as in Refs. l and 4 to 
8, the calculation is made with the aid of the clas
sical kinetic equation. 

2. Consider a plane monochromatic wave of fre
quency w on a normally incident half-space z > 0 
occupied by metal. 

The complete system of equations describing the 
behavior of the electrons comprises the linearized 
kinetic equation 

iUJf --L Vz-aL + l_ = - aato eEv 
I az 'r e: 

(6) 

*If we do not take into account quantum mechanical 
effects, then in the case of the anomalous skin effect of 
interest to us Rsurf >> Rvol• Actually, according to (4) 
and (5): Rsurf/Rvol""' vil/cv0 "' l/o» l. 

curl H = 4,;jj c, curlE = - i: H; 

(7) 

f is an addition to the equilibrium Fermi function 
and v = 'VP8. The boundary condition for Eq. (6) · 
serves as the condition for diffusion of the surface 
electron from the metal-vacuum boundary 

f = 0 for Vz > 0, Z = 0 (8) 

and for the vanishing of the non-equilibrium addi
tion f inside the metal 

f = 0 for z--o. oo. (9) 

We shall solve the systems (6) and (7) !>Y succes
sive approximations. Assuming w considerably 
larger than v/ o and 1/ -r we find the zeroth approxi
mation for the distribution function f and the elec
tric field E, neglecting the second and third terms 
in Eq. (6). From the obtained field we determine 
the first approximate distribution function, a knowl
edge of which allows us to calculate the real part 
R of the impedance (the imaginary part X of the im
pedance is calculated from the zeroth approxima
tion). Thus, the zeroth approximation is: 

iUJf = -(df0 jdz)eEv. 

Considering that a{0 /(h = -o(8 - 80 ) we have 

(10) 

Integration is over the surface 8(p) = 8 0 where 8 0 

is the Fermi limiting energy, and dS an area ele

ment on the Fermi surface. From the fact that the 
current density and the electric field are out of 
phase by 77/2, it is evident that we deal here not 
with the ohmic current but with a polarized electron 
gas. 

We eliminate from Eq. (7) the magnetic field and, 
by means of the condition j z = 0, the z component 
of the electric field.* Then we obtain an equation 
for the electric field 

*Condition j z = 0 is equivalent to the equation of con
tinuity div j = 0. We have omitted the term ap/at (p is 
the electron density), which corresponds to disregarding 
displacement current (cf. Ref. 7). 
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d2£"'- 47te2 (~) E = 0 
dz~ c2 m 13 ' 

"-13 
(ll) 

where we int1roduce the designation 

-~ v:vz dS~ vzvvl3 dS j ~ v; dS} (12) 

(CI., {3 = x, y). In the isotropic (quadratic) case 

(13) 

The last equation is obtained from Eq. (ll) if we 
assume 8 = p2/2m, V= p/m and take into account 
that N = (817 /3)p3 (2171i)-3 • We align the x andy 
axes with the principal axes of the tensor (N/m)aj3· 
Then 

where 

(15) 

(N/m)", (N/m)r are the principal values of the ten
sor (N/m)af3· If the crystal is cubic then Q" = Qr. 

The surface impedance in the zeroth approxima
tion is pure imaginary 

Zx = 4..-:Ex (0) I cH y (0) = 4du/oxlc2 = 4rriwlci1x; 
(16) 

Zy = - 4..-:Ey (O)IcH x (0) = 4..-:wioylc2 = 4rriwjci1y. 
(17) 

These formulas are natural generalizations of ex
pression (3). 

Note that if we do not take into account ohmic 
loss (to what degree this is valid will he shown 
further on), then we have two directions (axes x 
and y in our notation) in which the polarized re
flected wave coincides with the incident one (we 
speak here of a plane polarized incident wave): 

Assume for definiteness that a wave polarized 
longitudinal to the x axis falls on the metal. Then 
we have inside the metal a field (zeroth approxima
tion): 

Ex= Ex (0) e-zfllx; Ey = 0; Ez = Ez (0) e-211\ 

Ez (0) =-Ex (0) ~ vzvx dS I~-~~ dS. (18) 
v v 

The expression for E z is obtained from the condi
tion fz = 0 (c{. above). Substituting expression (18) 
in Eq. (6) and integrating with allowance for bound
ary conditions (8) and (9) we find 

- ato Vxlvz-~(vzvxlv) dS I ~(v;lv)dS 
f - - az eE X (O) ___ .::._(77iw---:+-vo-;-) 7/ v_z_!__-;1 ~/-;;:-a X---

X {exp (- ;J- A exp (- iw ~ vo z )} (19) 

where 

A = { 0, if vz < 0, 
1,ifvz>O. 

Using (19) and the central symmetry of the Fermi 
surface, we calculate the total current flowing 
through the metal 

J f. 2e2 ax 
" = ~ let (z) dz = (2d-)3 Ex (0) iW + vo 

0 

(20) 

Neglecting v0 compared with wand Vz/o"w com
pared with unity, we obtain for the current a zeroth 
approximation which agrees with expression (10) if 
we substitute (18) for the field Ei. In particular, 
the y-component of the zeroth approximation for the 
current is equal to zero. 

We are interested in the first approximation- that 
part of the current in phase with the field. As was 
indicated earlier, two cases are possible: normal 
skin effect, when 

I ~ I' 'lo w -::/ v ow, or t~a, (21) 

and anomalous skin effect, when 

'10 I w <?; V /ow, or l ::;?> o. (22) 

Prior to calculating the current in the first ap
proximation we recall the inequalities which the 
frequency must satisfy for our analysis to he cor-
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rect. It is assumed here that I'Ua "' fl. Then from 
(1) 

and from I'U » v/8 (the path traversed by the elec
tron during one period of the field is considerably 
less than the depth of penetration) we find that 

I'U » flv/ c. Thus 

According to (21) and (22) we have finally: normal 
skin effect 

Dv lc~~0 ~<il~D; 

anomalous skin effect 

v0 ~ Dv I c <";;: Ul ~ D. 

Both chains of inequalities can take place, since 
v/c rv 10-3 • 

Thus, in case of the normal skin effect we neg
lect in expression (20) the terms of order v/ !'UO and 
retain terms of order v0 / I'U. * For the surface im
pedance we obtain here 

Analogously, if the incident wave is polarized along 
they axis: 

To derive (23) and (23') we used the relation be
tween impedance and total current 

For the anomalous skin effect, neglecting the 
terms "- v0 /I'U and retaining the term "- v/&J, we 
have from (20): 

(24) 

*It should be taken into account that in this approxi

mation ox,y = o~?~(l - ivo/21'U) where 8~0 ) is defined by 

(16). E;quations (23) and (231) contain o!?~ (zeros omit
ted!). 

Here (the prime stands for integration in the region 

Vz > 0) 

3{~v~ d;- (~ v:v~ dSr I~~ ds} 
(25) 

In case of a quadratic isotropic dependence ~ = v, 
and we arrive at Eq. (5). 

From expression (20) it is evident that even if 
the incident wave is polarized along one of the 
main axes of the tensor (N/m);k the current is el
liptically polarized. This, combined with the fact 
that in the presence of the anomalous skin effect 
the metal is characterized not by the conductivity 
tensor but the conductivity operator which obvi
ously cannot be diagonalized at all points. 

The presence of elliptical polarization of the cur
rent leads to "oblique" terms of surface impedance. 
Put* 

Ex (0) I J yx = Zxy '"'-' Rxy; 

Ey (0) I Jxy = Zyx-::::; Ryx• 
(26) 

Here I yx is the y component of the current, caused 
by the incidence of an electromagnetic wave polar
ized along the x axis. Analogously, I xy is the x 
component of the current due to the electric field 

ly· 
From (20) and {26): 

If we assume that the anisotropy is on the order of 
unity, then from (27) it is easy to obtain an esti
mate of the "oblique" terms: 

Rxy ~ Ul2o2 I c2v2' 

* Xyx = Xxy = 0 (zeroth approximation!). 
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i.e., 

Rxy I X~ ow I v = cw I vn ~ I. 

Such an inequality is entirely natural since .j J" I 
»llrxl· 

Formulas (23)- (25) and (27) solve the postu-
lated problem- determination of expressions for the 
component of surface impedance in the case of an 
arbitrary dispersion of conduction electrons, usable. 
in the region of infrared frequences. 

3. Consider now the behavior of a wave reflected 
from a metal. If an electromagnetic wave polarized 
along the x axis is incident on a metal surface, the 
electromagnetic field outside the metal has the form 

E E -ikz + E ikz 
X == inc 'e ref e ; 

H E -ikz E ikz y == inc e -. ref e ; 

E E ikz 
y = yxe ; H E ikz 

x = yxe ; 

(28) 

k = w 1 c. 

The resultant y component of the electric field and 
x component of the magnetic field are due to the 
presence of the "oblique" terms in the surface im

pedance. 
Equations (17) and (26) allow us to calculate the 

amplitudes of the reflected waves 

1- clx /47t 
£ref = - £inc 1 + cl I 47t ' 

X• 

and if we take into account that I cZ"/ 41T I « 1, then 

Ere£ =- Einc (1- cZx I 2rc), 
(29) 

The relationship Eyxl E inc ""' vD/ cw measures the 
ellipticity of the reflected wave since Z" and Z"Y 
have different components (Zxy is real and Z" al

most pure imaginary). 
4. Measurement of the surface resistance allows 

us in principle to obtain information about the form 
of the Fermi surface. However, the formulas ob
tained are very complicated, and, naturally, it is 
not possible to say much about a complete synthe
sis of the Fermi surface from these data. On the 
other hand it is possible to use certain simple as
sumptions about the character of the dispersion de-

pendenc~, and attempt to make use of the quantity 
Z = R + iX to determine the constants which de
scribe the properties of the electron gas. 

If we ~~xamine the isotropic quadratic dependence 
of energy on momentum* 

s = p2 12m, (30) 

then for the measured values of R and X (cf. Refs. 

3 and s)"t it is possible to determine the effective 
electron mass m and the electron concentration N: 

N = 9 · 2-'l•,/1• (2;:t~)' 1 • (~-J R-'1•x-3 ; 

m = 9 · 2-'/,"''/, (2;rn. )'1• (w 1 ec4) R-'I.X-1 • 

We use the fact that the limiting velocity of the 
electrons is determined by the electron concentra
tion and the mass 

If the static conductivity a is known, then, in ad
dition to determining N and m, it is possible to de
termine the collision frequency v0 = 41Tw2/c2X2a, 

Let us turn attention to the following fact. It is 

very important to be certain that the formulas used 
to determine the characteristics of the electron gas 
[in our case (3) and (5)] are correct; i.e., we must 

be satisfied that we are really in the plasma region 
(2) and therefore under the conditions of the anom

alous skin effect. For this it is necessary that the 
ohmic loss be small, i.e., we must have 

R <!!;._X. (31) 

If this condition is fulfilled, we know that we are 
in the plasma region. The determination of the 

*It is obviously possible to use this dependence for a 
description of the properties of a polycrystal. 

t We, purposely, use only the (ormulas of the anoma
lous skin effect since the relaxation time ·-. (or the col
lision frequency v0 ) does not enter into them. On the 
other hand the formulas for the normal skin effect can in
deed be used for determining the quantity J.lo (and, of 
course, the ratio Nlm). Actually from (3) and (4) we 
have: J.l0 = 2wR/X; Nlm = 41TW2 /e2 c2Xl. The value of the 
static conductivity a= Ne2 /mv0 can be employed to check 
the determined values of Nlm and J.10 , Note that in this 
case it is impossible to determine N and m individually, 
but only their ratio. 
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character of the skin effect (normal or anomalous) 
is difficult since this character is connected with 
the relationship between the mean free path l = v1: 
and the depth of penetration o = c/0. 

If the normal skin effect takes place (l « 8) then 
by using the expression for the surface impedance 

. (2mo V 'I Z = R +LX = l - 2- { ( w2c2 + 1 - w-c) ' 
" e a 

(cf., for example, Ref. 4; a= Ne 2 1:/m is the static 
conductivity of the metal) it is easy to find an 
equation connecting R, X and a: 

XRc2a I 2rrw = 1. (32) 

The relation obtained can serve as a criterion for 
the normal skin effect since in that case when the 
mean free path l ="' v1: is considerably greater than 
the depth of penetration of the field, the parameter 
( = XRc2a /2rr ru is also considerably greater than 
unity. Actually, if we use the expression for sur
face impedance in the radio-frequency region at low 
temperatures (the limit of the anomalous skin ef
fect, cf., for example, formula (4.19) of Ref. l) we 
obtain 

~ ~ (l 1 a)'1• ~ 1 (t ~ c 1 V2rraw). 

From (3) and (5) (infrared region, low temperatures) 
we have 

Thus, if ( » l we have the anomalous skin ef
fect. If furthermore R «X, we deal with the 
"plasma" region. 

Note that allowing for the polarization of the 
bound electrons (electrons of the ionic residues of 
the metal) does not change substantially the value 
of the parameter (. For instance, under the condi
tions of the normal skin effect we have for ru « 0: 

5. Generally in optical investigations we do not 
make use of the surface impedance, but use the idea 
of a complex coefficient of reflection n-ix,. When 

the mean free path of the electron is much less than 
the depth of the skin layer (l « o, normal skin ef
fect) the coefficient of reflection is connected in 

the usual manner with the complex dielectric con

stant 

n-ix= V;'; s' = s (w) -rr 4a (w) i I w. 

In particular, if the relaxation effect is described 
with the help of the relaxation time (a= a 0 /(l+iru1.")) 
and we do not take into account the ionic residues, 
then 

ne~~~- 1--( 1 ( (!2 ) 

lz ~~~+ 002 

+- 1--- + ___Q___ . 1 }i( (!2 )2 ( \1 (!2 )2}'1• 
2 11 ~ + 00 2 w 11~ + 002 ' 

1 I 0 2 2 \1 CP )2 }'j, + -l (1 - --) + (-__Q_ -- . 
2 1 11~ + 002 w 11 ~ + 002 

The expressiOn for the surface impedance, as is 
known, 1 •9 may serve as a basis for introducing the 
effective dielectric constant Eeff• and consequently 

neff and x,eff; * 

x, _ eX I 47t 
eff- (eR j4rt)2 +(eX/ 47r) 2 

(33) 

For R «X (of interest in our case) 

(33') 

For expression (33) to be considered as defining 
the effective coefficient of reflection, the imped
ance must depend weakly on the form of the inci
dent wave, i.e., on the angle of incidence and po
larization. l. 9 In order to be satisfied that the con
cept of effective dielectric constant can be used 
also in the infrared region (under the conditions of 
the anomalous skin effect) we have examined the 
dependence of the surface impedance on the angle 
of incidence 'fin that case when the vector of the 
electric field is polarized in the plane of incidence 
(p is the polarization). Assuming the quadratic 
dispersion law (30), we have obtained (ru/0 « l ): 

*For 0 >> l, naturally, neff = n, x,eff = x,, 
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4rt <» ( 1 + v2 . 2 ) X = c n 5c2 sm cp ' 
3rt v R= ---
4 c2 

(34) 

Thus, in this (:ase it is not necessary to take into 
account the dependence on the angle of incidence, 
since v2 / c2 rv 10-6, and we have discarded terms 
known to be larger to obtain formulas (3), (5), (23), 
(24), and (34). 

Therefore, in the region of frequency and temper
ature under consideration we may introduce an ef
fective index of reflection, which 

[we have used (33')]. Note that in this region one 
must satisfy a condition analogous to (31): 

(31') 

In the anisotropic case (particularly, when the 
ohmic resistance has "oblique" terms) introduction 
of an effective index of reflection is inconvenient 
and does not present great interest. 

6. In the case of a single-crystal metal with ani
sotropic conductivity we use for the description of 
the electron gas a quadratic dispersion law with 
two effective masses: 

Assuming that the normal to the surface makes an 
angle a. with the axis ()f the crystal, we obtain: 

(1) The coordinate of the principal directions* 
on the surface of the metal 

x = [z x [1: x n]]/sin a.; y = [z x n]/sin a. 

(z is the coordinate of the normal to the surface, n 

In conclusion the author expresses thanks to V. 
L. Ginzburg, L. D. Landau, I. M. Lifshitz, and K. 
D. Sinel'nikov for useful discussions of the points 
raised here. 

*I.e., the direction in which the tensor X;k is diago
nal (cf. Sec. 2). 

the coordinate of the axis of the crystal, and cos a. 
=(z•n). 

(2) Principal values of the tensor (N/m);k: 

(3) Components of the surface impedance: 

[ 4rtw2 ( 2 . • 2 )]'/, Xxx = Ne2c2 ml cos IX+ m3 Sill IX ' 

V 4rtw2 

Xyy = Ne2c2ml, 

3rt [ (cos2 a sin2 a)J''•. Rxx = Ryy = 4c2- 2Eo ----m;;- + --;z;- ' 
E = ( 3N )'1. (2rt7i)2 

0 Srt 2m'1•m'f, 
1 3 

(e0 is the limiting fermi energy). The oblique 
terms of the surface impedance Rxy and Ryx in 

(37) 

this case are equal to zero. This, obviously, is 
connected with the "isotropy" of R;k· It should be 
borne in mind that the vanishing of the "oblique" 
terms of the ohmic resistance in this simple case 
does not at all indicate that they are equal to zero 
in reality .. The point is that the selected dispersion 
law (36), although it also may describe, for ex
ample, the anisotropy of the conductivity, is known 
not to be useful for more complex effects (for ex
ample, galvanomagnetism, de Hass-van Alphen ef
fect, etc.). Obviously, for the description of the 
formation of electric polarization at normal inci
dence a more complex dispersion law is necessary. 
For example, the assumption of some specially ori
ented ellipsoid (as in Bn1 .o leads to the expected 
effect. 

Equations (37) allow us to determine the electron 
concentration N and both values of the effective 
mass (m1, m3): 
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Bremsstrahlung of an ultra-relativistic particle of spin one-half in an arbitrary field with 
central symmetry is considered. A relation between the bremsstrahlung cross section and 
elastic scattering cross section is obtained for ultra-rei ativistic particles. 

1 AS IS KNOWN, the bremsstrahlung in the colli-
•sion of an ultra-relativistic charged particle with 

a nucleus occurs principally at large distances from 
the nucleus. The cross section for the process is 
therefore determined by the assymptotic form of the 
wave function of the particle in the nuclear field. 1" 3 

The assymptotic form of the particle wave functions 
may be found by describing the scattering effect of 
the nucleus by the scattering matrix. In the ultra
relativistic case, it is possible to establish a gen
eral relationship between bremsstrahlung and elas
tic scattering cross sections. This relationship does 
not depend on the character of the interaction be
tween the particles and the scattering nuclear field. 

Let us first of all consider the elastic scattering 
of fast particles with spin ~ in a field with central 
symmetry. The free motion of a spin-~ particle of 
momentum p is described by the spinor plane wave 

where U.p is the unit amplitude of the spinor wave. 

The scattering of particles in an external central 
field will be characterized by the scattering matrix 
S. The wave function describing the stationary 
states of the particles in the external field will then 
obviously be determined by the product of the ma
trix S by o/0 

(I) 

At large distances from the center of the field, the 
wave function (l) will be of the form of a sum of a 

plane wave and an outgoing spherical wave. To 
verify this, let us use the Huygens principle as for
mulated by Akhiezer4 for spinor waves. This prin
ciple establishes a relationship between the value 
of the wave function at a certain point and the value 
of the wave function on a closed surface surround
ing this point. Let us choose for this surface an 
infinite plane perpendicular to the momentum of the 
impinging particle and passing through the center of 
the external field 

I])(+) (r) = _!_ ( (r !!._- l4£- m) rn exp (ip I r- p!) SupeiPP dp 
I p 41t ~ or I r - p I 

(2) 
= Upeipr- _!_ \ (r i- 14£ -m)rn exp (ip I r-p I) {1- S} UpeiPPdp. 

41t J or I r - P 1 

Far from the center of the field (r-+ oo), this function has the form 


