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We derive a quantum mechanical transport equation for electrons in a metal in the field of an 
electromagnetic wave. In contrast to the usual treatment, our equation is not based on the as­
sumption that the photon energy is small compared to kT. 

DuRING the last decade there has been developed a theory of the skin-effect in metals* based on the fol­
lowing transport equation for the electron distribution function f ( p, r, t) 

at ;at+ (p/m) af!ar + e E af!ap =I (f), (1) 

where I (f) is the collision integral. In this equation the electrical field E plays the role of a classical 
force. However, if the frequency w of the electromagnetic field is sufficiently high, one must take quan­
tum effects into account, even if the threshold for the internal photoeffect, i.e., for a transition of an elec­
tron into another band, is not yet reached. From the quantum mechanical point of view the interaction of 
an electromagnetic wave with the electrons takes place through the absorption and emission of photons 
(with a simultaneous absorption and emission of phonons in the lattice). If in these processes the change 
in the electron energy ti w is small compared to the breadth of the tail of the Fermi distribution kT, 
one can consider the gain of energy by the electron to be practically continuous. 

As long as the condition 

1,u., <{: kT (2) 

is satisfied, one can thus use classical methods and use the transport equation (1). We notice that condi­
tion (2) is extremely far reaching. At room temperatures ( T ~ 300°) it involves A » 40JL and for T = 
10° we have A » 0.2 em, which means that quantum effects can be of importance even in the radio range. 

If tiw ~ kT, it is necessary to treat the problem quantum mechanically. This is, in particular, true 
for the infrared region of the spectrum, where usually inequality (2) holds in reverse. Although this fact 
has been known for a long time (see, for instance, Sec. 53 of Ref. 2) up to the present nobody has carried 
out anything like the complete investigation of this case. The only attention paid to this problem was in a 
paper in 1954.3 Holstein has calculated the volume absorption in a metal using perturbation theory. In this 
case he assumes that the electron distribution and the field do not depend on the position coordinates. 
Holstein's results are therefore, generally speaking, only applicable in the case of the normal skin-effect. 
On the other hand, if we exclude the region of very high temperatures, the skin-effect in the infrared 
region of the spectrum is usually anomalous. It is thus necessary to construct a method which enables us 
to consider simultaneously quantum effects and the anomalous character of the skin-effect. The present 
paper is devoted to obtaining such an equation. 

For the time being, to fix our ideas, we shall consider a system of N electrons in a macroscopic 
volume V. 

Such a system can in quantum mechanics conveniently be described through a density operator F 
which satisfies the equation4 

aft ;at= tH. FJ--(1 /ih)(fifr-fft) 

and the normalization condition Tr F = 1; in Eq. (3) H is the Hamiltonian of the system. 
The operator F gives a complete quantum meehanical description of the system since the average 

value of any dynamical variable R can be calculated from the formula 

RAv== Sp (RF). 
*See, for instance, the survey article by Ginzburg and Motulevich. 1 
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In quantum mechanics one normally uses the density matrix p ( x, x') which is the x-representation of the 
operator F. 

We shall use the so-called mixed representation of the density matrix which is determined in the follow­
ing way5 

· . -3N \ ( 't" ';" \ -iTp f'/i f (p, X, t) = (2c:-;h) J d'=[J X- -2 , X+ T) e . 

The "quantum distribution function" which is introduced in this way does not have the meaning of a prob­
ability density for the state with coordinates p and x, as can be seen, in particular, from the fact that 
the function f(p, x, t), as follows from its definition, though essentially positive is not always so with­
out fail. However, if we use it, we obtain the most complete analogy with the classical case. In particular, 
Eq. (4) for the averages now becomes 

<k (p, x)> = \ dp dx R (p, x) f (p, X, t). 
Av .) 

For the sake of simplicity we shall consider one-particle distribution functions. If an external electro­
magnetic field is present this function can be determined as follows 

where P is the generalized momentum and A the vector potential of the field. For physical reasons it 
is convenient, however, to deal with distribution functions of the ordinary momenta. We change at the same 
time the normalization of the distribution function in such a way that it gives the average relative occupa­
tion number with respect to the momenta. We make thus the following substitution 

N (2,-;h)3 f (P, r, t) = f' (p, r, t); P=p--e-A(r,t). 
c 

(5) 

Since the time is involved in the transformation we have 

N (2rrli) 3 ~ f (P, r, t) = ~ f' (p, r, t) + ; A (r, t) -k f' (p, r, t). 

The primes will be omitted in the following. 
It can easily be shown that the electrical current density can now be written in the usual way 

j (r, t) = ( 2~;)3 ~ ·!iz· f (p, r, t) dp. 

Finally one obtains easily the relation 

F - 1 \ d f (P + p' t) ir (p-p') I h 
P, P'- iV (2rrli)a .l r 2 , r, e . (6) 

We consider a system consisting of electrons, photons and lattice phonons. We shall use methods ob­
tained from the transport equations developed by Bogoliubov and Gurov.6•7 

The conclusions below are based on perturbation theory; this means that we assume the interaction of 
the electrons with the lattice vibrations and the electromagnetic field to be small. In metal optics the 
occupation numbers of photons are always large compared to unity. The electromagnetic field can thus be 
considered to be an external, classical field, satisfying Maxwell's equations. Under our assumptions, the 
density operator of the system F will depend on the coordinates of N electrons ( r 1, r 2 , ••• , rN), on 
the momenta of S phonons ( q 1, ~, ••• , qg), and on the time t. 

We write the Hamiltonian of the system in the form 

... + ... 
where bq and bq are the creation and annihilation operators of phonons of momentum q, 
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Finally, the operator of the interaction between elElctrons and phonons is of the form, 

0 (1, q) = C(!ii q I /V2Mu)'1• (b:e-iqrffi + bqeiqrf1i), 

where C is a constant of the order of magnitude of the average electron energy in the metal, 8 M the 
mass of an atom in the lattice, u the velocity of sound, and D. the volume of an elementary cell in the 
crystal. 

We introduce now operators that depend only on a fraction of all the particles, defined as follows 

FAva (1 AN S . ' ... , v; q1, ... q"; t) = Sp F · ( 1, ... N; ql> ... qs; t). 
(v+1,, .. N) 
a+1, .. ., S 

Applying this operation to both sides of equation (3) we find 

! ,pva = [ ± H (k) + ± H (qk),Fv"] + ~ ± (U (i, qk)}v"J 
k-1 k-1 - L-1 k-1 

" v s 
+(N-v)~ Sp[U(v+1,qk).fv+1.al+ 2} ~ Sp[U(i,qk).f'·"+1]. 

k-1 (v+l) i-1 k-a+l (k) 

Hence it follows in particular ( N » 1) 

aft (1) A A s A A a'J: (q) A h h A 

at= [H(1), F(1)] + ~Sp[U(1, qk) F(1, qk)J, at= [H(q), f(q)] +NSp[U (1, q), F(1, q)], 
k-1(k) ' (1) 

A s 
aF~1/ q) =(If (1)+H (q),+ D (1, q), F (1, q)J + N Sp [U (2, q) F (1, 2; q)J + ~ Sp[U (1, qk), F (l; q, qk)J. 

(2) lt-2 (It) (7) 

If there is no interaction operator, the dependence on the coordinates of several particles is obviously 
of the form of a product of one-particle operators; in particular, 

F(1, q) = F(1)F(q), l~(l. 2) = (1-P12)F(1) F(2), 

ft (1, 2; q)= ft (q) (1- P12) ft (1) ft (2), ft (1; q, q') = ft (1) ft (q) ft (q'J, 

where P 12 is the "permutation" operator.* If the i.nteraction is not zero we introduce instead of F ( 1, q) 
the correlation operator 

a ( 1, q) = ft (1, q) - ft ( 1) ft ( q). 

Since we have assumed the interaction between Blectrons and phonons to be small, the operator G is 
obviously also small. For problems connected with the behavior of metals in an electromagnetic field 
(in particular, for calculating the current) it is sufficient to restrict ourselves in the transport equation 
to terms quadratic in the magnitude of the interaction between electrons and phonons. Correspondingly 
one can retain in Eq. (7) only the terms linear in this quantity. In the same approximation we can take for 
the state operator of the phonons its equilibrium value 

(8) 

where hvq = u I q I is ~e energy of a phonon of momentum q. If, at the same time, we take into account the 
fact that the operator U ( 1, q) is non-diagonal in the occupation numbers of the phonons we obtain easily 
the following set of equations 

s 
a'F(I)/at=!H(I), F(I)J+ ~Sp[V(l,qk),G(1,qk)l 

k-1 (k) 
(9) 

*The operator F is symmetrical with respect to the permutation of identical particles. However, in 
order to calculate matrix elements we have to deal with antisymmetric combinations of one-electron wave 
functions, which is inconvenient. It is better to use ·certain methods to antisymmetrize the operator F 
after which one can take the matrix elements with respect to a product of one-electron lJ;-functions. The 
meaning of the operation P 12 is clear from the equation 

(pl, P21 ?12ft (1) ft(2) I p~. p;) = FP]• p~ fp2 p~. 
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ao(l,q)fot = [H(l)+ H(q), GJ+ [U(l, q), F(1)F(q)J-NSp [U(2, q),P12 F (1)F(2) F(q)J. 

where F ( q) is of the form (8). 
(2) 
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(10) 

We go now over to an expansion in terms of the magnitude of the vector potential of the electromagnetic 
field which we write in the form 

A (r, t) = A 0 (r) eiwt + A~ (r) e-iwt 

If there is no field the electron distribution is homogeneous and does not depend on the time; any deviation 
from this distribution will be assumed to be due to the electromagnetic field. It is therefore natural to 
represent the quantities we are trying to determine in the following form 

(11) 

In these equations the operators F 0 and G0 do not depend on the time and describe the equilibrium state 
of the system of electrons which are interacting with the phonons; however, the operators i 1 and o1 

which represent the influence of the electromagnetic field will be proportional to the amplitude of this field, 
A0, and be of the form 

F1 (1, t) = F1, (1) ei"'t + ftt;., (1)e-i"'t, G1 (1, q, t) = G1., (1, q) ei"'t + at,(1, q)e-i"'t. 

Using the notation 

l3 (1, q, t) = [U (1, q)', /: (1) P (q)J- NSp [0 (2, q),P"12ft (1) F (2) ft (q)J, 
(2) 

we can write Eq. ( 10) in the form 

ao;at- rfl (1) + fl (q), 61 = 13. (12) 

In the same way as in Refs. 6 and 7 we impose on the solution of this equation the condition that the corre­
lation vanish when the particles go to infinity, 

t 

}!! St+l; (t + ") 8t+'" = o, 8t = exp {- i~ ~ dt' r.H (1, t') + fl (q)J }· (13) 
0 

Carrying out the differentiation, we have by virtue of ( 12) 

a~ 8t+~o (t + ") 84'" = 8t+-r{:" a (t + ")- rll (1, t +")+If (q), a (t + ")l} 84-r = St+-rB (t + ") 84,. 

Hence we have after integration 

We now go to the limit T- oo; then, by virtue of (13) the first term vanishes and we obtain the solution 
of ( 12) in the form 

00 t+-r t+-r 
G(t)=-~d"exp{- i~ ~ dt'[H(1,t')+H(q)J}B(t+")exp{+ ii ~ dt'[H(l,t')+H(q)l}· 

0 t t 

If we restrict ourselves to terms linear in the field we find thus after some simple calculations 

(P, Nq I Go I P', N~) = -2'1t1i.O+ (Ep -£p, + (Nq- N~) hvq) (P, Nq / B0 I P', N'c.). 

(P, Nq I 01, I P',Nq) =- 2'1t1i0+ (Ep- £p, + (Nq- N~) hvq + t..w) 

X (P, Nq \ B1, I P', N~)- 2'1t1i. m:1icu (A0 • P- P') [o+ (Ep- £p, 

+ (Nq- N~) h~q + nw)-o-1'- (Ep- £p, + (Nq- N~) hvq)](P, Nq I Bo I P', N'q), 

where 
B0 (1, q) = [U (1, q), f 0(1) F (q)]- NSp [U (2, q), Pl2Fo(1) Fo(2) F (q)], 

(2) 

B1w ( 1, q) = [ U ( 1, q~F 1"' ( 1) F (q)]- NSp [ U (2, q), P12 (F 100 (I) Fo (2) 
(2) 

+t'0 (1)P1,(2)) t"(q)], o+(x)= 1/2o(x)+i/2'1tx. 
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If we now want to obtain the transport equation it is sufficient to substitute into the right hand side of 
Eq. (9) the correlation operator G given in this way. We restrict ourselves for the moment to the case 
of a spatially homogeneous distribution. The operator F is then diagonal in the p-representation and we 
have in agreement with Eq. (6) 

(P 1 f 1 P') = N-1 a (P- P') f(p,t). 

Since the operator Fo does not depend on the time, its matrix elements can depend only on the generalized 
momenta, 

(PI F0 ! P') = N-1a (P- P') fo (P). 

On the other hand, the distribution function can naturally be written in the form 

Then, in accordance with (11) 

(Pi F1cu I P') = N-1a (P -- P') [f 1cu (p) +-%- Aoafofap]. 

For the sake of simplicity we shall drop henceforth the index w. Equation (9) has in the zeroth approxi­
mation (with respect to the field) the form 

s 

~Sp[U (1,q"), G0 (1,qk)]=0. 
k-1 (k) 

Going over from a sum to an integral we have in the p-representation 

00 

V(2r.nf3 ~ dq ~ (P,Nq J[U(l,q),G0 (l,q)JIP',Nq)=O. 
JqJ<q0 Nq-0 

The limiting phonon momentum q0 is connected with the Debye temperature e of the material in the 
well-known way: hvq0 = uq0 = ke. After simple, but rather lengthy calculations the equation of the zeroth 
approximation is of the form 

/(cl) {f0 (P)) = 0, (14) 

where 
t;,. 1tC2\ - -

f(c]} (f (p)) =' (Z1t1i)" Mu1i .\ dq q {o (a) [Nqf (p + q) (1- f (p))- (Nq + 1) f (p) (1- f (p + q)] 
JqJ<;;q, 

+a (b) [(Nq + 1) f (p + q) (1- f (p))- Nqf (p) (1- f (p + q)l}, a= Ep- Eq+p -hvq, b = Ep- EP+q + hvq 

is the usual collision integral for electron-phonon interaction. It is well known that this equation is satis­
fied by the Fermi distribution function 

fo (p) = [exp (Ep- £ 0) / kT + Ip. 

In the case of a spatially homogeneous distribution we have [ H ( 1), F ( 1) ] 
thus in first approximation that 

0. From Eq. (9) it follows 

s 
-iwF~(l)= ~Sp[U (1,qk),GI(1,q~<)J. 

k=l (k) 

Calculations which in this case are even more cumbersome than in the zeroth approximation lead to the 
following result 

iw fdp) + iw _t:_ Ao aato = J (tdP) + _t:_ Ao aato )\ + _!_ (AoP) D (p). c p c p c (15) 

where f is the quantum mechanical generalization of the usual collision integral, 
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+ fo (p + q)f1 (p)J +-} [o(b + t.w) + o(b -nw)J [(Nq + l)f!(p + q)- Nqf!(p)- fdP + q) fo (p)- II (P)fo(P + q)J}; 

ll 
D (p) = + (2d)B ~ dqq(pq)~fo(P + q) [o (a+ nw) 

lqi<Cq, 

+ e-ho>/kT o(a-nw) + eh•qJkTo(b + nw) + eh•q-1io>JkTo(b- nw)]. 

For 11 w - 0, ! (f1) goes over into I(cl) (f1). In order to understand the meaning of the rest of the 
terms on the right hand side of Eq. (15) we notice that the last of them can be written in the form 

-% (A0p) D (p) = (21t~)3 :::r:~ ;c ~ dq · q (A0q) { 2~., [o (a +nw)-o(a-nw)] [-(If;+ 1) f o (p) ( 1 - f o (p + q)) 
lql<;;q, 

+~fo(P+q)(l-fo(P))l+ 2~., [o(b+nw)-o(b-t.w)][-Nqfo(P)(l-fo(P+q))+(Nq+f)fo(P+q)(l-fo(P))J}. 

Let us imagine further that in the equation I(cl) (f0 (p)) = 0 we have substituted p = P + eA0 /c and have 
carried out an expansion in terms of A0 accurate up to terms of the first order of magnitude. Then 
I(cl) (f0(p)) can be written as the sum of three expressions; the first of these is the same as expression 
(14) and is equal to zero, the second arises from expanding expressions of the kind fo ( P + eA/c) and the 
third one, finally, arises from the expansion of the o-function. It is clear that the terms 

~ e i:Jf o d e ) I- A0 T·an - (A0.P D (p) 
C vp C 

are the quantum mechanical generalizations of the last two expressions and cancel one another as 11 w - 0. 
In the case of a spatially inhomogeneous distribution the method which we have just applied to obtain 

the transport equation will, generally speaking, not be suitable, since now in the transformation (5) the 
vector potential depends essentially on the coordinates, and, in particular, from Eq. (6) there does not 
follow a simple connection between Fp, P' and the function f (p, r, t). However, it is necessary to take 
into account the fact that the distance over which the field or the electrbn distribution changes materially 
will always be very large compared to the de Broglie wavelength of an electron near the Fermi surface. 
In other words, if we write, for instance, f1 (p, r, t) as a Fourier integral of the coordinates, 

i ikr/Jt 
fdp,r,i)=Jflk(P,t)e dk, 

fJk will be noticeably different from zero only, if 

1 k I <S Po· (16) 

For this reason all terms of Eq. (15) retain their form with the proviso that now A0 and £1 will be func­
tions of the coordinate r. We only have to take into account the term [ H ( 1), F ( 1 )] of Eq. (9) which 
previously vanished. 

It can easily be shown that the left hand side of the transport equation can be reduced to the expression 

~ a;; + i ~c (2;1i)3 ~d-e dp' e -i~(p-p'll1if 0 (p') [ ( -c, gr) (p. Ao (r))- (p'. Ao (r + ; ) - Ao ( r- ; ) ) ] , 

in which the integral terms can be neglected by virtue of condition (16). 
Introducing the electric field strength E ( r) = (iw/ c) A0 ( r) and the relaxation time operator 1- = 

-1-1 we write the transport equation finally in the form 

· f + P i:Jf1 + A-1f _ E [ i:Jfo + 1 i:Jfo 1 D ( )] tw 1 -- -c 1 -e - -A ---.-p p . 
m i:Jr i:Jp iw-r: i:Jp zw 

(17) 

In conclusion the author expresses his deep gratitude to the supervisor of this work, Professor V. L. 
Ginzburg, and also to V. P. Silin for his constant interest and valuable comments. 
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A system of transport equations has been obtained for a plasma consisting of electrons and 
one kind of positive ions placed in an electric and magnetic field. The system includes the 
continuity equations, equations of motion, and the equation of heat transport for electrons 
and ions. The electron and ion temperatures are considered to be different. The case of 
arbitrary ratio of the particle collision frequency to the Larmor frequency is considered. 
The derivation of the transport equations from the kinetic equations is similar to that of 
Chapman and Cowling. 

1. THE TRANSPORT EQUATIONS 

THE state of a completely ionized plasma can be characterized by the electron and ion distribution func­
tions fa (t, r, v). In the presence of electric and magnetic fields E and H these distribution functions 
satisfy the following system of kinetic equations (s·ee, for example, Chapman and Cowling1) 

(1.1) 

where a denotes the type of particle ( 1- electrollls, 2- ions). 
Following Landau, 2 we take the collision integrals Sa{3 ( f af{3), which give the change in the distribu­

tion of particles of type a as a result of their colllisions with particles of type {3, to be of the form: 

21t''Ae~ e~ a ~ { f" at~ f~ of"} , Sa~Uaf~>=---- ---, --- uikdv, 
ma. avi m~. av" m" avk 

(1.2) 

where 

The "Coulomb logarithm" A appearing in (1.2) is equal to the logarithm of the ratio of the maximum and 
minimum impact parameters A= ln (PmaxiPmin)• For the smaller impact parameter one should substi-

*Work performed in 1952. 


