In lead (Z = 82) the ratio $\overline{\cos^2{\theta_{\rm N}}/\cos^2{\theta_{\rm N}}l}$ equals 0.99 and 0.98 for E = 3 × 10⁷ ev and 1.5 × 10⁷ ev respectively.

¹S. Z. Belen'kii, Лавинные процессы в космических лучах (Cascade Processes in Cosmic Rays), Gostekhizdat, 1948.

Translated by H. Kasha 169

EFFECT OF DAMPING ON POLARIZATION OF DIRAC PARTICLES IN SCATTERING

A. A. SOKOLOV and B. K. KERIMOV

Moscow State University

Submitted to JETP editor June 27, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 827-829 (September, 1957)

 ${\rm\bf T}_{\rm HE}$ elastic scattering of both Dirac and spinless particles by a fixed force center was investigated in Refs.l to 4 using damping theory. We calculate below, using damping theory, the polarization resulting from elastic scattering of Dirac particles.

The fundamental integral equation of damping theory which determines the scattering amplitude $f'_{S'} = f'_{S'}(k')$ and is relevant in a discussion of polarization phenomena has the following form (we use the notation of Ref. 3):

$$
(f'_{s'}-b'_{s'}b_{s}f_{s})V_{\mathbf{k}'\mathbf{k}}=\frac{kK}{8\pi^{2}c\hbar i}\sum_{s''}\oint d\Omega''V_{\mathbf{k}'\mathbf{k}''}V_{\mathbf{k}''\mathbf{k}}b'_{s'}b'_{s''}f_{s''}^{''},\tag{1}
$$

Here $E = c\hbar K$ is the total energy of the particle and $V_k'k''$ is the Fourier component of the potential V (r).

We shall restrict ourselves to calculating the polarization resulting from elastic scattering of Dirac particles by a delta-function potential $V(r) = V_0 \delta(r)$, $V_k' k'' = V_0$. In that case we have from formulas (5) of Ref. 3:

$$
b'_{s'}b'_{s''} = \sum_{j=1,2} h^j_{s's''}, \qquad (2)
$$

where

$$
h_{s's''}^1 = \frac{1}{2} \Big(1 + \frac{k_0}{K} \Big) [\cos \theta'_{s'} \cos \theta'_{s''} + e^{i(\varphi'' - \varphi')} \sin \theta'_{s'} \sin \theta''_{s''}] \qquad h_{s's''}^2 = \frac{1}{2} \Big(1 - \frac{k_0}{K} \Big) s's'' \left[\cos \theta'_{s'} \cos \theta''_{s''} + e^{i(\varphi'' - \varphi')} \sin \theta'_{s'} \sin \theta''_{s'} \right].
$$

We seek a solution of integral equation (1) of the form $(s' = 1, -1)$:

$$
f'_{s'} = \sum_{j=1,2} \varepsilon_j h'_{s's} f_s.
$$
 (3)

Taking into account the orthogonality condition for $h^j_{S',S''}$ [see Eq. (31) of Ref. 3] we obtain for ϵ_1 and ϵ_2 from Eqs. (1) – (3):

$$
e_{1,2}=\frac{1}{1+i\delta_{1,2}}\,,\,\,\delta_{1,2}=\frac{V_0}{4\pi c\hbar}\,k\,(K\pm k_0). \tag{4}
$$

From Eqs. (3) and (4) we obtain for the amplitudes $f'_{S'}$ of the first scattering

$$
f_1' = \frac{1}{2} \left[a_1 \varepsilon_1 + a_2 \varepsilon_2 \right] \cos \frac{\theta'}{2} f_1 - \frac{1}{2} \left[a_1 \varepsilon_1 - a_2 \varepsilon_2 \right] e^{-i\varphi'} \sin \frac{\theta'}{2} f_{-1},
$$

\n
$$
f_{-1}' = \frac{1}{2} \left[a_1 \varepsilon_1 - a_2 \varepsilon_2 \right] \sin \frac{\theta'}{2} f_1 + \frac{1}{2} \left[a_1 \varepsilon_1 + a_2 \varepsilon_2 \right] e^{-i\varphi'} \cos \frac{\theta'}{2} f_{-1},
$$
\n(5)

where $a_1 = 1 + k_0/K$, $a_2 = 1 - k_0/K$, and θ' , ϕ' are the angles corresponding to the first scattering.

The expression for the second scattering amplitude $f''_{S''}(f''_1, f''_{-1})$ is obtained by replacing θ' , ϕ' and f_1 , f_{-1} on the right side of Eq. (5) by θ'' , φ'' and f_1' , f_{-1}' . The effective differential cross section for the second scattering is given in terms of $f'_{S'}$ and $f'_{S''}$ by the relation

$$
d\sigma = \frac{1}{N} \frac{\partial}{\partial t} \sum_{\mathbf{k}^*, s^*} C_{s^*}^{\prime -} C_{s^*}^{\prime} = \frac{K^2}{4\pi^2 c^2 \hbar^2} |V_{\mathbf{k}^* \mathbf{k}'}|^2 \frac{f_1^{\prime +} f_1^{\prime} + f_{-1}^{\prime +} f_{-1}^{\prime}}{f_1^{\prime +} f_1^{\prime} + f_{-1}^{\prime -} f_{-1}^{\prime}} d\Omega^*,
$$
 (6)

where

$$
d\Omega'' = \sin \theta'' d\theta'' d\varphi'', \ k' = k'' = k.
$$

From here, using Eqs. (4) and (5), we obtain the following expression for the effective differential cross section for the double scattering of an initially unpolarized beam of Dirac particles $(f_1^+f_1^+ + f_{-1}^+f_{-1}^- = 1,$ $f_1^+f_1 - f_{-1}^+f_{-1} = 0$, $f_1^+f_{-1} = f_{-1}^+f_1 = 0$) by a delta-function potential:

$$
\sigma(\theta'',\varphi'')=\sigma_0(\theta'')\left[1+\delta(\theta',\theta'')\cos\varphi''\right],\qquad(7)
$$

where

$$
\delta(\theta',\theta'') = P(\theta')P(\theta'') = \left(\frac{V_0^2 K^2}{4\pi^2 c^2 \hbar^2}\right)^2 \frac{k^4 (\delta_2 - \delta_1)^2 \sin \theta' \sin \theta''}{4K^4 (1 + \delta_1^2)^2 (1 + \delta_2^2)^2 \sigma_0(\theta') \sigma_0(\theta'')} , \quad \cos \varphi'' = \mathbf{n}' \mathbf{n}''.
$$
 (8)

 $P(\theta')$ and $P(\theta'')$ are the polarizations acquired by an initially unpolarized beam separately in the first and second scattering, n' and n'' are unit vectors in the two polarization directions, and $\sigma_0(\theta')$ is the differential scattering cross section, with damping taken into account, of an initially unpolarized beam of Dirac particles indicent on a delta-function potential

$$
\sigma_0(\theta') = \frac{V_0^2 K^2}{16\pi^2 c^2 \hbar^2} \Big[\frac{a_1^2}{1 + \delta_1^2} + \frac{a_2^2}{1 + \delta_2^2} + 2 \frac{k^2}{K^2} \cdot \frac{1 + \delta_1 \delta_2}{(1 + \delta_1^2)(1 + \delta_2^2)} \cdot \cos \theta' \Big].
$$

It follows from Eq. (8) that no polarization is obtained in the first approximation of perturbation theory $(\delta_1 = \delta_2 \cong 0)$. In the high-energy region k $\gg (4\pi c\hbar/V_0)^{1/2}$ $(\delta_1^2 \gg 1, \ \delta_2^2 \gg 1)$ we obtain for the degree

of polarization in the case of two identical scatterings
$$
[\theta'' = \theta', \ P(\theta'') = P(\theta')]
$$
\n $\delta(\theta', \theta') = [P(\theta')]^2 = \left(\frac{4\pi c \hbar}{V_0}\right)^2 \frac{4k_0^2}{k^6} \tan^2 \frac{\theta'}{2}$ \n (9)

As can be seen from Eq. (7) the assymmetry in the second scattering is due only to the phase polarization $(f_1^4f_{-1}^2 \neq 0)$ resulting from the first scattering. In the case when the incident beam possesses only amplitude polarization, $f_1^+ f_1 - f_{-1}^+ f_{-1} \neq 0$, $f_1^+ f_{-1} = f_{-1}^+ f_1 = 0$, the first Born approximation gives for the effective scattering cross section

$$
d\sigma_{ss'} = \frac{K^2}{4\pi^2 c^2 \hbar^2} |V_{\mathbf{k'k}}|^2 \frac{1}{2} \sum_{s=\pm 1} \left[(1+sS') \cos^2 \frac{\theta'}{2} + \frac{k_0^2}{K^2} (1-sS') \sin^2 \frac{\theta'}{2} \right] f_s^+ f_s d\Omega'.
$$
 (10)

Thus the ratio of the non-spin-flip cross section ($ss' = 1$) to the spin-flip cross section ($ss' = -1$) is equal to

$$
\frac{d\sigma^{\dagger\,\dagger}}{d\sigma^{\dagger\,\dagger}} = \frac{K^2}{k_0^2} \cot^2\frac{\theta'}{2}.
$$

 $\overline{1A. A. Sokolov}$ and B. K. Kerimov, Dokl. Akad. Nauk SSSR 105, 961 (1955).

3 A. A. Sokolov and B. K. Kerimov, Nuovo cimento 5, 921 (1957).

⁴A. A. Sokolov, J. Phys. (U.S.S.R.) 9, 363 (1945).

Translated by A. Bincer 170

² A. A. Sokolov and B. K. Kerimov, Dokl. Akad. Nauk SSSR 106, 611 (1956), Soviet Phys. "Doklady" 1, 345 (1956).