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Equations are derived which describe the behavior of a beam of moleeules under the action 
of an alternating field with variable amplitude and phase; these equations are solved for 
various cases. An exact solution is obtained for the case in which the frequency of the ap­
plied field, the amplitude of which is varying, is the same as the frequency of the molecular 
transition. Approximate solutions are obtained for the cases in which the amplitude and 
frequency of the field vary slowly or rapidly during the time of flight through the cavity. 

THE operation of the molecular oscillator is based on the interaction between molecules which move 
through a cavity and the electric field in the cavity. :l As a result of this interaction the molecules make 
a transition from an upper energy state to a lower energy state, thereby giving energy to the cavity. The 
state of the molecular beam which interacts with the electric field in the cavity can be described by means 
of a polarization function. In general the relations between this polarization and the electric field in the 
cavity is extremely complicated. At the present time this relation has been determined only for the case 
in which the beam of molecules interacts with an alternating electric field whose frequency and amplitude 
remain constant in time. However, in analyzing all possible transient proce~sses in a molecular oscillator 
and in analyzing the stability of the steady-state oscillations, it is necessary to determine the polarization 

. of a beam which is subject to an alternating field of variable amplitude and phase (frequency). 
The present paper is devoted to a theoretical study of the polarization of the beam of molecules under 

these conditions. 

1. FORMULATION OF THE PROBLEM AND DERIVATION 
OF THE BASIC EQUATION 

The state of a monochromatic beam of molecules:, acted on by an electric: field E ( t) is determined 
completely by the molecular density matrix Cik( x, t). The dependence of the matrix elements on the 
coordinate x and the time t is determined by the following system of partial differential equations:2 

(1.1) 

Here D (x, t) is a function which characterizes the molecular distribution over energy states: D = c22 
- C11 , v is the velocity of the molecules, p is the dipole moment of the molecules, and w0 is the fre­
quency of the molecular transition. 

The polarization of the beam is related to the elements of the density matrix by the expression 

(1.2) 

As is apparent from Eq. (1.2), the polarization of the beam is intimately related with the molecular tran­
sitions from one energy state to another due to the action of the cavity field. At the entrance to the cavity, 
where the molecules have not as yet made any ener~;y transitions, 

C12 = C21 = 0 for X= 0. 

We shall assume, moreover, that the number of active molecules which enter the resonator cavity is 
such that 

D = 1 for x = 0. 
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(1.3) 

(1.4) 
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The further development is limited to the case in which the variation of the electric field in time is 
more or less sinusoidal, so that 

E (t) = E 0 (t) cos [w0t + <p (t)], (1.5) 

where the field amplitude Eo( t) and phase cp( t) are slowly-varying functions of time as compared with 
the period T = 21r/ w0• Under these conditions the polarization of the beam can be written in the form of 
a sum of real and reactive parts: 

P (x, t) = P 1 (x, t) sin [w0t + cp] + P2 (x, t) cos [w0t + <p]. (1.6) 

The amplitudes of the real and reactive parts, P 1 and P 2, are slowly-varying functions of time. If, in the 
right halves of Eqs. (1.1) we neglect terms which vary rapidly in time (frequency 2w0 ) and introduce new 
variables defined by the relations 

~=x-vt; 'Yl =x+vt, 

the system of equations in (1.1) assumes the form 

!!_l!_ = E~p .[e 1 '~'C21 - e-1'~'C12l , ac12 P e1'~'E D acn - __p_ e-1'~' E D 
a1J 2thv -a;) = - 4ihv o ' 07j - 4ihv 0 • 

In this case the boundary conditions given in (1.3) and (1.4) assume the form 

(1. 7) 

(1.8) 

D= 1, C12 =C21 =0 f9r 'Yj=-~. (1.9) 

The values of the elements of the density matrix C12 and C21 and consequently the polarization of the 
beam P (x, t), in accordance with the second and third equations in (1.8), can be expressed in terms of 
the function D as follows: 

~ ~ 

C12 =- 4i~v ~ e1'~'(r.>Eo (q D (C) d~, C21 = 4~v ~ e- 1'~'mE0 (C) D (qpC. 
-~ -~ 

(1.10) 

Substituting (1.10) in (1.2) and, in accordance with (1.6), dividing the polarization into real and reactive 
parts, we obtain the expressions 

~ 

P1 = - 0z: ~cos [cp (C)- cp ('IJ)l E0 (q D (qd~. 
-~ 

~ 

P2 = - ::v ~ sin [<p {C)- <p {'Yl)l E0 (~) D {q dC. 
-~ 

(1.11) 

Whence it is easy to show that the system given in (1.8) is equivalent to the following system of equations: 

~~ == 2!v Eo ('IJ) P1, a~1 = cp' {'IJ) P2 --frr~ E0 ('11) D, ~2 =-1 <p'('IJ) P1 

with the boundary conditions at x = 0 

(1.12) 

(1.13) 

The function D is described by an integra-differential equation which can be obtained by substituting 
(1.10) in the first equation of (1.8): 

here y = p/2hv. 

~ 

~~ = -12E0 {'YJ) ~Eo {C) cos [<p ('IJ)- cp (q] D {C) d~; 
-E 

On the other hand, the function D obeys the differential equation 

'!!__ [-1- aD_]_ <p"(7J) .!!_ [-1- aD]+ 2 !!_ [E (r.) D ( )] + <p'2 ('IJ) aD _ 2 'P" ('IJ) E ("") D { ) _ O 
d'IJ2 £ 0(7J} a'IJ <p' ('IJ) d7J £ 0(7J) a7J 1 d7J 0 I "'' ' £ 0 (7J) a7J 1 <p' (7J) o I 7J -

with the boundary conditions 

(1.14) 

(1.15) 

(1.16) 
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which can be obtained starting from the system in (1.12) for the functions P 1 and P2• The equivalence of 
(1.14) and (1.15) is easily demonstrated. Thus, the determination of the polarization of the beam of mol­
ecules being acted on by an electric field such as that given in (1.5) leads to the solution of the differen­
tial equation in (1.15). This equation is not amenable to solution in the general case in which both the 
amplitude and phase of the field vary in time. HowE1ver, Eq. (1.15) can be solved if certain limitations 
are imposed on th.e amplitude and phase of the field. The remainder of this paper is devoted to such 
solutiohs. 

2. APPLIED FIELD WITH CONSTANT PHASJ<: 

In the case in which the frequency· of the electric field acting on the beam of molecules is equal to the 
frequency of the molecular transition but the amplitude Eo varies in some arbitrary manner the solution 
of Eq. (1.15) can be found by quadratures. In Eq. (1.15) we set cp = canst = 0. Then the equation assumes 
the form 

(2.1) 

Integrating Eq. (2.1) once and setting the constant of integration equal to :l;ero, we have 

(2.2) 

As can be shown by direct substitution, the general solution for this equation is given by the expression 

~ ~ 

D = A cos [ 1 ~ E0 (q d~] + B sin [ 1 ~Eo (q dC]. (2.3) 
-~ -~ 

Here A and B are constants of integration. The boundary conditions in (1.8) are satisfied if A = 1 and 
B = 0. 

In accordance with (1.12), in the constant-phase case the reactive part of the polarization P 2 vanishes 
while the real part becomes 

~· 

P1 = 2hv ·£~ ~~ = - p sin [ 1 ~ E0 (C) d( J. (2.4) 
-~ 

If we now transform back to the variables x and t, the argument of the sine function in (2.4) assumes 
the form 

X/V 

2vj ~ E0 (t- t') dt'. (2.5) 
0 

An examination of this expression shows that the time variations of the field amplitude are averaged 
over an internal x/v which is of the order of magnitude of the molecular time of flight across the cavity. 
This situation is the basis for the "inertia non-linearity" of a molecular oscillator where the time con­
stant of the "inertia" is equal to the time of flight across the cavity. It also follows from Eq. (2. 5) that 
the quasi-static expression for the function D 

D = cos21 Ex, 

as well as the corresponding expression for the polarization of the beam 

P(x, t) = -psinw0 tsin2jEX, 

can be used in the case in which the amplitude of the field varies very slowly, 

c:E' I E<f::;_ I. 

It will be shown below that these results can be extended to the general case in which both the ampli­
tude and phase of the field vary although Eq. (1.15) cannot then be solved by quadratures. 
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3. APPLIED FIELD WITH SLOWLY VARYING AMPLITUDE AND PHASE 

In the case in which the amplitude E0 and frequency cp 1 vary slowly as compared with the time interval 
T, it is possible to find an asymptotic solution for Eq. (1.15); the method is similar to that used to find the 
quasi-classical approximations for the 'IF-function in quantum mechanics3 or the geometric-optic methods 
used in the analysis of the propagation of electromagnetic waves.4 For this purpose we write the solution 
of Eq. (1.15) in the form 

D ('l/) = ei<I>(11l. (3.1) 

The equation which describes the function <P ( TJ) is of the form: 

~ iiD'a- 31D'ID" + iiD"'- [ 2 f + ~] [iiD"- <D'2 ] + [ 12E2 + cp'2 * 2 (fr- !l; + ~] i<D' + 12£2[}- ~] = 0. (3.2) 

In the case in which E and cp 1 are constant in time, the function D is a periodic function of TJ, with 
frequency2 

(3.3) 

If the amplitude and phase of the field do not vary significantly over a period of the function D, we can 
introduce a large parameter A, which characterizes the rate of change of the function D as compared 
with the variations of the functions E and cp 1 : 

T£ ~ /,, cp' ~I,, E' jE ~ 1, rp"fcp' ~· 1. 

In this case, the function <P in Eq. (3.1) can be expanded in powers of A 

<I>= /,ID0 ('l/) + ID1 ("') -+-+ <D2 ("') + · · · · 

Substituting (3.4) in Eq. (3.1), expanding the left half in powers of A, taking account of (3.4), and 
equating terms with the same power of A , we have 

2 3<1>' " . '2 I E' '2 q>" '2 . 2 2 I 0 121T\.1 2E2 q>" 2 2 E' 0 
).. )- o <Do- 3t<Do <D1 + 2 E <Do + ~<Do + tT E ID1 + tcp ~1- T ~ + T E E = · 

The solutions of these equations are of the form: 

<D0' 1 = 0·, <D'02.3 = -+- ~ 1T2E2 + ro'2, tD 1 =- i In· 'P' • <D12 3 =- i In y£ • 
V T 1 V y2£2 + tp'2 1 • v y2£2 + tp'2 

(3.4) 

(3.5) 

(3.6) 

(3. 7) 

(3.8) 

Substituting these solutions in (3.1) and taking account of the boundary conditions (1.16) we can obtain an 
approximate expression for the function D in the case in which the amplitude and frequency of the field 
which acts on the beam are slowly varying 

t 

y2£ (t) E (t- ~)cos ~ 2v ( y2£2 {t1) + <p'~;!1>)"' dt1 + <p'(/}tp' ~~;- xjv) 

D(x,t)= --------"-t-..:x;:.;fu:,------------:--..-~ 
[y2£2 (/) _ <p'2 (/) 1 4v2]'1• [y2£2 (t _ xjv) _ tp'2 (t _ xjv) 1 4v2j'l• 

This expression, which applies when 

'tcp" I v T2E2 + cp'2 <:: 1, 'tT£'/ v T2£2 + cp'2 ~1' 

(3.9) 

(3.10) 

indicates that the beam tends to average the effect of the field with variable amplitude and frequency dur­
ing the time in which the molecules move through the cavity; this effect, however, is small because the 
changes are slow. Substituting Eq. (3.9) in Eq. (1.12) it is easy to determine the polarization of the beam. 

4. APPLIED FIELD WITH RAPIDLY VARYING AMPLITUDE AND FREQUENCY 

Equation (1.15) can also be solved approximately when there are v~ry rapid periodic changes in the 
amplitude and frequency of the field which acts on the beam, i.e., changes fast as compared with the time 
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of flight of the molecules through the cavity. Let 

Eo= E 1 + e (),, t); rp' = rp~ +X (J., t), (4.1) 

where E 1 and <p: = o/2v are constants (E 1 1- 0, o == w- w0 ), which characterize the mean amplitude and 
frequency deviation of the field while e ( t) and x ( t) are periodic functions of time whose periods are 
smaller by a factor of A than the molecular time of flight through the cavity (A » 1). 

In solving Eq. (1.15) for D ( TJ) in this case we can separate terms which vary rapidly with a change in 
the argument from those which vary slowly: 

(4.2) 

We substitute (4.1) and (4.2) in Eq. (1.14) and collect terms in the same power of the parameter A. In the 
zeroth approximation we have 

~ ~ 

D~ + d~ =- 12£~ ~cos a ('YJ- C) D 0 (C) dC- r2£ 1e (>-., 'Y/) ~cosa('YJ-C}D0(C)dC 
-~ -; 

Separating rapidly-varying and slowly-varying terms in this expression we obtain 

~ 

D~ = 12£~ ~cos a ('Yl- C) D 0 (C) d~, 
-~ 

(4.3) 

(4.4) 

(4.5) 

The solution of Eq. (4.4) indicates that in the zeroth approximation rapid variations in the amplitude 
and frequency of the field which acts on the beam have no effect on the distribution of the molecules over 
states-the field is averaged. The rapid time variatilons in the molecular distribution over states are 
small in absolute magnitude and are determined, in accordance with (4.5), by the change in the field am­
plitude. The rapid changes in the frequency of the field affect the function D ( TJ) only to second order 
in 1/A. 

In a similar fashion we can extend the calculations to the higher approximations. By this means it 
can be shown that the slowly-varying part D1 ( TJ) = 0. 

Hence, with accuracy up to terms of order 1/A inclusive, for a field which is characterized by rapid 
changes in amplitude and frequency the solution of Eq. (1.15) is given by the relation: 

1 
D ('YI) =Do ('Y/) + T do (1,, 'Yj). 

The polarization of the beam, given by the expression 

~ 

P = - py ~ sin [w0 t + rp (C)] £ 1 (C}D (C) d~, 
-~ 

can now be found easily. With accuracy to first order this quantity is 

P=Ps+P£, 

where Ps is the part of the polarization which varies slowly with time 

Ps =- Pi~-z{il sin 2Qx [£1 sin wt +ex coswt] +a (I- cos 2Qx) [£1 coswt +ex sin wtJ}. 

Here ex is the mean value of the product of the amp1itude deviation and the frequency deviation. 
The rapidly varying part of the polarization is given by the expression: 

t 

Pf = -lJz!_ D 0 (x) ~ e (t') dt'. 
t-xiv 

(4.6) 

(4. 7) 

(4.8) 

(4.9) 

(4.10) 

In conclusion we may note that the relations which have been obtained for the polarization of a 
beam of molecules are rather simple and can be used directly in studying quasi -periodic modes in 
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the molecular oscillator; an investigation of this kind, however, is beyond the scope of the present 
paper. 
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The transition radiation and the Cerenkov radiation which are produced when a charged 
particle moves successively through two media which differ in their dielectric and mag­
netic properties are considered. The cases in which the particle moves from vacuum 
into the medium and from the medium into vacuum are considered in detail. 

THE transition radiation which is produced when a particle moves from a medium characterized by a 
given dielectric constant into another whose dielectric constant differs from the first was first considered 
by Ginzburg and Frank1 (see also Refs. 2-4). In the present paper we consider the radiation fields which 
are produced in the general case for media which differ in both their dielectric and magnetic properties; 
certain particular cases are analyzed. 

1. GENERAL CASE 

We consider the field associated with a particle which has a velocity v and moves from one medium 
into another. The first medium will be characterized by the macroscopic constants E 1 and p. 1 (the di­
electric constant and magnetic permeability); the second medium is characterized by E 2 and p. 2• We shall 
assume that the energy lost by the particle per unit length of path is negligibly small compared with its 
kinetic energy. Under these conditions the field associated with the particle is given by Maxwell's 
equations 

1 ao 4rr , 1 as curlH = --+ --veo(r-vt) curlE = ---c at c • c at • 
divB = 0 div D = 4rre8 (r- vt). 

(1) 

It will be assumed that the particle moves along the z-axis from - oo to + oo and that the interface 
between the two media is the plane z = 0 through which the particle moves at t = 0. We resolve the field 
and currents in triple Fourier integrals: 5 




