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IT is well known that so far no nucleon wave equation, even for the free nucleon, has been formulated. 
This is specifically due to the fact that the mass of the proton differs from that of the neutron. In this 
connection it is of interest to remark that the linearization of a second-degree wave equation leads in 
general to the equation 

(1) 

Here m0 and a are constants. Unfortunately, the mass operator M = m 0 exp ( ay5) does not commute 
with the Hamiltonian that follows from (1). We therefore generalize (1) in the following manner:* 

rrv a I axv- (mo c I h) I exp (2aT a)l cjl = 0. (2) 

The commutation relations for the operators rv, I, and T3 are determined by the following postulates: 
(a) the Hamiltonian, the spin-projection operator, and the third component of the isotopic spin, T 3, form 
a system of commuting operators; (b) the relation between momentum and energy has the usual form. 

This gives 

[I'v, ra]+ = 28va• [rv, T3 ]+ = 0, [T3 , /]+ = 0, (rv, /L = 0, TaT a= 1. II= 1. (3) 

As is well known, the components of the isotopic spin have to satisfy the commutation relations 

[T2, TaL= iT1, [Ta, T1L = iT2, [Tl, T2L =iTa. (4) 

The operators rv, Tk, and I have irreducible eight-by-eight representations: 

(5) 

Here Ok are two-by-two spin matrices; 1II and 1IV are two-by-two and four-by-four unit matrices 
respectively. The sign x denotes the direct product of the matrices. 

It follows from (2) that in the nonrelativistic limit the components of the wave function are character­
ized by the following quantum numbers. 

One sees from the table that the eigenvalue t3 = -! corresponds to a particle mass m 1 = m 0e-a and 
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ta =! corresponds to a mass m2 = m 0ea. Taking m 0 = 1837.38 me 
(the average of the proton and neutron masses) and a= 3a/107r, then 
m 1 and m 2 are equal to the proton and neutron mass respectively 
within the experimental errors for these masses, 1 and (2) can be con­
sidered as the wave equation of the nucleon. 

It is easy to show that one can obtain from (2) two current vectors: 

(6) 

(7) 

The first can be interpreted as the specific nucleonic current ( K is the 
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nucleonic charge) and the second as the electric current. Frem (7) we obtain the nucleon electric-charge 
operator 

which commutes with the Hamiltonian and with the spin operator. The eigenvalues of Q are equal to 
zero for the neutron states and € for the proton states. 

It should be mentioned that (2) is not invariant under improper Lorentz transformations. It follows 
from the pseudoscalar character of y 5 that a reflection of the space coordinates changes a proton into 
a neutron and vice versa. This means that (2) is invariant under simultaneous reflection of space and 
isospin coordinates. 

Equation (2) can also be used to describe the doublet of the 8 hyperons. One then has to take m0 

(8) 

= 2588 me while a has the same value as for the nucleons. This yields a mass of 2586 me for the E­
and 2590 me for the .E.0• 

It is interesting to note that one can also find for the operators rv, Tk, and I a twelve by twelve 
irreducible representation which allows a description of the triplet of ~ hyperons. 

*A more detailed derivation of (2) and a generalization for the case of weak interactions will be pub­
lished in the Transactions (Trudy) of the Institute for Physics and Astronomy of the Academy of Sciences, 
Estonian S.S.R. 
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THE process of electron capture into betatron orbits has been studied by many authors, with various 
accelerators, and sufficient experimental material has consequently been compiled. A number of theo­
retical papers have been devoted to the subject of el,ectron capture.1- 5 Although they were not fully suc­
cessful in giving a complete explanation of the capture process, they still allow an estimate of the con­
tributions of the different capture mechanisms and a comparison with experiment. However, no attention 
has been paid so far to the following process, which can contribute to the capture of electrons into beta­
tron orbits. Consider the motion the electrons in a coordinate system moving along the equilibrium orbit 
with a velocity equal to the azimuthal injection velocity of the electrons. In this coordinate system the 
electrons will move towards each other. Since the electron velocities corresponding to radial motion 
are small, the collision probability will be sufficiently large. As a result of multiple scattering, elec­
trons starting out with equal oscillation amplitudes will later acquire a gaussian amplitude distribution. 
Thus, the conditions for strong damping of the oscillations will statistically be fulfilled for a certain 
fraction of the injected electrons. 

A rough estimate of this effect can be made in thE~ following manner. If an electron makes an elastic 
collision at the time when its velocity is at maximum, then the amplitude of oscillation will decrease as 

p~ = Po cos tp, (1) 

where 1/1 is the scattering angle. The probability of single scattering at an angle 1/1 in traversing a dis­
tance dx through an electron gas of density N0 is !P.ven by 

(2) 




