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extrapolating the equation of state to higher pres-
sures.

In conclusion, I wish to thank V. N. Zharkov for
proposing and discussing this subject.
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UP to now only several decays of hyperfragments
with Z = 6 has been described in the literature!™
In three cases the binding energy of the A° particle
has been estimated:
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Ba = (136), NBx = (204 11),
®Ba = (19.0 4+ 14.0) Mev.

In a stack of Ilford G5 emulsions, exposed in the
stratosphere, we have observed a heavy hyperfrag-
ment which decayed by emission of a fast proton.
This hyperfragment was interpreted as being Fp
or Nep. A mesonic decay of a hyperfragment was
also observed in this stack.

Case 1. A multiply charged hyperfragment is
emitted from a star of the type 15 + 2n with a
range R =127pu. The absence of 6 rays near the
end of the track and the narrowing of the track in-
dicate that the hyperfragment came to rest. The
charge of the hyperfragment is estimated from the
length of the narrowing to be Z =8 + 2. At the end
of its track the hyperfragment decays into three
charged particles (a, b, ¢ in Fig. 1).

Particles a and b stop in the same emulsion
after travelling 204 and 20 respectively. From
the number of gaps and of & rays, the charges of
these particles were determined to be 1 and 1—2
respectively.

Particle c¢ leaves the stack after penetrating
8 emulsions. The grain density and the multiple
scattering yield a mass of (2170 + 300) me. Par-
ticle c¢ thus can be identified to be a proton. Its
energy is (117.3 + 12.4) Mev.

The residual momentum of the three charged
particles was computed for all possible types of
particles allowed for a and b. Assuming that
no neutral particles participate in the decay, the
momentum unbalance has to be taken up by recoil
of the residual nucleus leadingtoarange R = 0.8u.

FIG. 1. Decay of a heavy hyperfragment.
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(A range R =0.8pu is the largest range a particle
can have without producing a visible track.)

The binding energy of the A particle was de-
termined for all possible decay schemes and those
leading to positive binding energies were selected.
This analysis leads to the following decay schemes
of the hyperfragment:

AP0 gy 4 p(d,t) +p +C, (§))]
AN —p(d,t)+ p(d, t, He3,Het) + p + N (C) (2)

with the following values for the binding energy:
for decay scheme (1), FBA= (18.9 = 16.3) Mev;
for (2) "By = (21.8 + 17.7) Mev.

If a neutral particle participated in the decay
the possibility is not excluded that the hyperfrag-
ment was actually lighter than F.

Case 2. A light hyperfragment is emitted from
a star of type 21 + 8p. After travelling 276y it
decays into two particles (Fig. 2). The scattering
of the hyperfragment indicates a decay at rest.
From the number of gaps and of 6 rays its charge
was determined to be Z =2—3.

Particle a has a range of 218y and was identi-
fied to have a charge 1. Track b leaves the stack
after traversing (12,320 + 500) p in 13 emulsions.

A comparison of the track density with calibra-
tion curves showed that the track was due toa 7
meson with an energy of (32.8 + 5.0) Mev.

A kinematical analysis yields the schemes

Hel, — p + =~ + Het + Q, 3)
Li%®—p + =~ +Li*" + Q,, (4)

with Ql = QZ = (39.0 + 5.0) Mev.

Taking QA = 36.9 Mev® we obtain Bp = (—2.1
+ 5.0) Mev.

In conclusion the authors express their thanks

FIG. 2. Mesonic decay of a hyperfragment.

to A. 1. Alikhanian for his interest in the work and
to V. M. Kharitonov for valuable comments.
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THE numerous articles on the collective oscilla-
tions of plasmas have thus far, to our knowledge,
not clarified the role of Coulomb correlations.

This problem can be approached in several ways.
For example, a kinetic equation which takes the
correlations into account can be used to derive the
dispersion equation for small density oscillations.
This dispersion equation would express the oscilla-



