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For C1 = 0 Eq. (5) is the same as Eq. (33) of Ref. 
1 with A = 0. Thus the two ellipsoids3 tangent at 
the kz axis are the limiting case of the equipo­
tential surfaces for the whole sequence of space 

Dt 0 tt ct ct2 ct ct2 1 groups 2d - 2d• av - 3V• .tv - .tv• D4 
- nl0, and this can hold for tellurium type lattices 
if the relation pf,2 = 0 is fulfilled. 

In conclusion I take occasion to thank E. I. 
Rashba, who c~lled my attention to the illegitimacy 
of the conclusions drawn in Ref. 1 from the rela­
tions (22). 
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As is well known, in source-free regions of an 
electrostatic field there can be no absolute max­
ima or minima of the potential; this fact excludes 
the possibility of maintaining a charged particle 
in a state of stable· equilibrium (Earnshaw's the­
orem). This same situation also excludes the pos­
sibility of localizing particles, if by localization we 
mean a state in which a particle with energy smaller 
than some given magnitude cannot go beyond the 
limits of a bounded region, no matter what the in­
itial conditions. 

The above statement does not apply in the case 
of a high-frequency electromagnetic field where, 
as we shall show below, localization of particles 
cari be accomplished. 

Consider a particle of charge e and mass m 
moving in an external electromagnetic field E ( r, t) 
= E (r )eiwt, H (r, t) = H (r )eiwt. In the nonrela­
tivistic approximation the equation of motion is 

·;.=1JE(r, t)+('Yl/c)rxH(r, t), (1) 

where TJ = e/m. If the frequency of the external 
field w is sufficiently high, the solution of Eq. 
(1) can be written as a sum of a slowly varying (in 
terms of the oscillation period of the external 
field() function r 0 (t) and an oscillating function 
r 1 (t) (frequency w). Assuming that r 1 (t) is 
much smaller than the distance L over which the 
amplitude of the external field changes markedly, 

(2) 

and neglecting terms of order I rt/L I and I ro/L J, 
averaging Eq. (1) over the period of the high-fre­
quency field we obtain an equation for r 0 (t ): 

;.~ (t} =- V<l>, <I>= ('11 I 2Cil}2 1 E 12 (3) 

Thus, the time average of the force acting on the 
particle is derivable from a potential; the potential 
is proportional to the square of the modulus of the 
electric intensity and is independent of the sign of 
the charge. 

There are an unlimited number of possibilities 
for creating potential wells ~(r ). The simplest 
of these are realized in quasi-electrostatic multi­
pole fields 

E (r, t) = V {rn P': (cos 6) cos mrp} ei"'t, 

where r, (J, and cp are the spherical ordinates 
and the P~ are the associated Legendre poly­
nomials. For example, the potential ~ in the 
field of a quasi-static axial quadrupole (m = 0, 
n = 2) is of the form ~ = const r 2(1 + 3 cos2 e), 
i.e., there is an absolute minimum at the origin.* 

To determine the motion of the particle inside 
the potential well we consider the first integral of 
Eq. (3): 

•"""const= !e!V0 • (4) 

The left-hand part of Eq. {4) ts equal to the time 
average of the kinetic energy of the particle, where 
the kinetic energy of the oscillatory (with fre­
quency w) motion plays the role of the potential 
energy. 

If the E = 0 at the center of the potential well, 
particles with energy less than or equal to V0, 

are localized within a region at the boundaries of 
which the following conditions are satisfied 

*It is interesting to note that in an axially-symmetric quad­
rupole field the original equation (1) in Cartesian coordinates 
leads to three Mathieu equations; this allows us to analyze 
the properties of the solution without the limitation imposed 
by (2). 
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Finally, we may note in forming potential wells 
it is possible to make simultaneous use of fields 
at different frequencies; 1 then, in averaging Eq. 
(1) over a sufficiently long time interval the po­
tential 4> in Eq. (3) will be of the form 

<D = {71214) ~{\ EnJiwn)2 • 

n 

Thus it is possible to create three-dimensional 
potential wells from one-dimensional and two-di­
mensional wells. This possibility is of interest, 
in itself, as a means of focussing rectilinear beams 
of charged particles.2•3 I 
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THE theory of electron motion with an arbitrary 
dispersion law E (k) within a crystal located in a 
uniform magnetic field was developed in Refs. 1 -
3. The magnetic susceptibility x of an aggregate 
of such electrons oscillates with changes of the 
magnetic field strength H (the de Haas -van Al­
phen effect). When the isoenergetic suriace in 
k-space that is determined by the equatio~ E (k) 
= const is closed, the period of the~e· oscillations 
is determined1•2 by the magnitude of the extremal 
section Sm of the isoenergetic surface by a plane 
perpendicular to H. When the surface E (k) = 
const is an open surface such as a corrugated cyl-

inder with the magnetic axis perpendicular to the 
cylinder axis, the oscillations are generally deter­
mined not by extremal sections but by the "bound­
ary" sections which are discussed below. 

The figure shows part of an open surface and 
its intersection with the plane k3 = const (H =Hz). 
When k3 is greater than some value kb the tra-

jectories (the curves which bound the section) are 
closed, and when 1 k3 1 < kb they are open. We 
use the term "boundary section"· for that obtained 
with the plane k3 = kb. The energy spectrum of 
electrons in closed trajectories; i.e., with I k3 1 
> kb, is almost discrete (slightly broadened dis­
crete levels), and when 1 k3 1 < kb it is almost 
continuous (small gaps in a continuous spectrum3 ). 

Close to the boundary section the width of the gaps 
is of the same order as the width of the allowed 
bands (formed from discrete levels3 ). 

Because of the (exponential) smallness of the 
discontinuities (gaps) when I k3 I < kb, the ex­
tremal section makes a very small contribution 
to the oscillating part of the state sum (1). The 
principal contribution comes from the boundary 
section. 

The number of electron states with energies 
from zero to E will bet-s 

+oo 
1 I 1 

Zosc(E • H) = 21t2a2 ~ ] 21tip 
• P--oo 

ka max a,/201.~ 
X ~ dks ~ exp {- 21tipn(k1 , k8 , E)} dk1• 

-hamax o 

(1) 

Here ~ is the lattice constant, a 0 = "fic/eH, k1 

is a continuous parameter describing the broaden­
ing, and a is the spin quantum number. For sec­
tions S (in a single cell of k-space) close to the 
boundary section the following dispersion law was 
obtained in Ref. 3: 


