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RECENTLY, the magnetic susceptibility of an 
electron gas was calculated by several authors,l-3 

taking into account long-range Coulomb correla­
tion. However, only the susceptibility due to the 
Fermi branch of the excitation spectrum was taken 
into account there. We would like to direct atten­
tion to the fact that the (Bose) plasma-oscillation 
quanta also make a definite contribution to the sus­
ceptibility. Actually, although these excitations 
are neutral and give no contribution to the current, 
their energy depends on the magnetic field inten­
sity H and consequently the plasma quanta are 
"carriers of magnetism." At ordinary tempera­
tures, real plasma quanta in a metal are practi­
cally not excited; their zero-point energy, how­
ever, also depends on H. This leads, as we shall 
show, to plasma diamagnetism comparable to the 
Landau diamagnetism. 

As is known (see, for example, Ref. 4), a sep­
aration of plasma oscillations into longitudinal 
and transverse is still possible in a weak magnetic 
field. For our problem, only the former are of in­
terest; the frequency of a longitudinal plasma 
quantum (in the frame of an isotropic model) is 

w 2 = w 2L + wH sin2 oc + 0 (k2), (1) 

where k is the wave vector of a plasmon, a is 
2 2/ the angle between k and H. WL = 47me m, WH 

= eH/mc, and n and m are the concentration 
and effective mass of the electrons ( WH « WL). 
We shall disregard terms of order k2 in Eq. (1) 
( apparently, they are small in comparison with 
wL for all k up to the limiting wave number ko). 

The magnetic susceptibility per unit volume, 

due to the dependence of the zero-point energy of 
the plasma on the magnetic field, is: 

(2) 

By virtue of Eq. (1), this yields 

X= - (ljl8rr2) (e 2jmc2) (hjm) k~/wL. (3) 

The quantity k0 in our approximation ( small H) 
can be regarded as independent of the magnetic 
field. Setting tik0 = f3PF• where PF is the Fermi 
boundary momentum and {3 is a dimensionless 
parameter (which may depend on n) we obtain 

X = - (~3/12V.~) (hjmc) (ne2jmc2)'1• 

= -0.96. 10-18 (m0jm)'1• ~3 Vn (4) 

( m0 is the mass of a free electron). Inasmuch as 
{3 < 1, but evidently {3 > !. 5 lx 1 "' 10-8 - 10-7• 

This quantity can be fully comparable with the re­
sult of Pines, obtained in disregarding the zero­
point energy of the plasma. Hence it is clear that 
this neglect, generally speaking, is by no means 
justified and the quantiative comparison of Pines' 
theory with experiment must be reviewed. 
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IN an attempt to apply the methods which have 
recently been developed in quantum electrodynam-
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ics to statistics, one is faced with the problem of 
the properties that will be exhibited in that case 
by the fundamental quantities entering into these 
methods. We shall show here that some very gen­
eral relations can be derived for the particle 
Green function G, which is defined in the well 
known manner as 

G =- i (T~1~ti• (1) 

where the indices 1 and 2 indipate that the lj; oper­
ator must be taken at t1 or t2. T is the symbol 
for the chronologically ordered product, while the 
averaging is taken over the actual state of the given 
macroscopic system. It is well known that chron­
ological ordering means that 

G =- i (~1~i> for t 1 > t 2, G = + i (~i~1J for t1 < t2, 
(2) 

where the upper and lower signs refer to the Bose 
and Fermi statistics respectively. 

The space-time dependence of the matrix ele­
ments of the operator lj; is given by equations of 
the form 

~nm (t, r) = IJI~% exp {i (wnmt- knmr)}. 

Wnm =(En- Em)/li, knm = (Pn- Pm) / li, 

where the indices n, m refer to the states of a 
closed system with total energy E and total mo­
mentum P. From the definition of the adjoint op­
erator, we have (lj;+)mn = (l/Jnm>*· 

Using these matrix elements we can write (2) 
in the form 

for t1 > t2: G = - iS IIJI~0~ 12 exp {iwnmt- iknmr}, 
m (3) 

for t1 < f2 : G = + iS IIJI~h 12 exp {iwmnt- ikmnr}, 
m 

where we use the notation t = t 1 - t2, r = r1 - r2 
and where the index n refers to the given state 
over which the averaging of Eqs. (1) or (2) is per­
formed. 

We shall now proceed to average expressions 
(3) over a Gibbsian ensemble. According to the 
basic principles of statistics, this operation means 
that we express the quantity G as a function of 
the temperature T and the chemical potential J.L 

instead of as a function of the energy E and the 
number of particles in the system N. We have 
for t > 0, 

G =- i ~ exp { (Q + tLN n --En) IT} 
n. m 

X I~~,;, 12 exp {iwnml- iknmr} 

where the temperature is measured in energy 

units. Since we sum now over the two indices n 
and m we can interchange the indices in such a 
sum. We use this possibility in the expression for 
G for t 1 < t2 and write for t < 0, 

n,m 

X IIJI~,;, 12 exp {iwnmt- iknmr} 

= + i Sexp {(Q + [LNn- En)/T} 
m,n 

X exp {(liwnm + !L) IT} I ~~,;,1 2 exp {(iwnm t- iknmr}. 

In the last transformation we have used the fact 
that the matrix elements l/J~b are different from 
zero only if Nm = Nn + 1. 

We now go over from the space-time repre­
sentation of the Green function to its Fourier co­
efficients, 

G (w, k) = ~~ G (t, r) f/ (Coll-kr) dt d3r, 

Integration over space gives a delta function of 
k - kmn· The integration over dt must be per­
formed separately over the interval from - oo to 
6 and from 0 to +oo, using the well known for­
mula 

c - i J e•rxxdx = 7ta (oc) + ~ · 
0 

We get as a result 

n,m 

X I~~,;, 12 a (k- kmn) {i7ta (w- Wmn) [l + e<fl--1i"'mnliTJ 

+ 1 [l + e(fl--1i"'mn)JT )}. (4) 
(t)mn-<U 

Comparing the two terms within the braces we 
see that there exists a certain relation between the 
real ( G') and the imaginary ( G") part of the 
Green function. In the case of Bose statistics this 
relation is 

"' 
G' (w, k) = -TC1 C. tanh 'lix- 11- -G" (x, k) dx (5) J 2T X-<il • 

-c.o 

where we take the principal value of the integral. 
We have always 

G"(w, k)<o- (6) 

as follows from Eq. (4). 
In the case of Fermi statistics we have 

"' G' ( k)- 1 \: th "lix-11- G" (x, k)d 
W, - --;t J co 2T -----x=-;;) X, (7) 

-en 
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where the sign of G" ( w, k) is the opposite of the 
sign of the difference l'iw - p. and both these 
quantities go through zero at the same time, 

G" ((!), k)/(ti.(l)- !L) < 0. 

At the absolute zero of temperature both (5) 
and (7) go over into 

<X> 

1 ~ G"'(x .• k)dx G' ((!), k) = + -:;;:_ 
4• X-CJl ' 

-00 

(8) 

(9) 

where the plus sign refers to l'ix > p. and the minus 
sign to l'ix < p.. 

It is interesting to note that these formulae show 
that the function G is not an analytical function of 
the variable ci), We can construct two analytical 
functions (which have no singularities in the upper 
half-plane) as follows 

G' + i tanh 'liro- [L • G"andG' + i coth itro- [L • G" 
?.T 2T • 
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