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The nonlinear Dirac equation is considered, and a method for its solution is given. Periodic 
solutions are obtained in general form. A relation is established between the nonlinear Dirac 
equation and the Klein-Gordon equation. 

AS has been pointed out repeatedly in the litera­
ture, it is possible that an important part in the 
solution of problems of the theory of elementary 
particles will be played by nonlinear generalized 
equations, and in particular by the nonlinear gen­
eralized Dirac equation. 

In the present paper we do not consider the 
question of the derivation of nonlinear generalized 
field equations. Taking the equations as given, we 
examine the possibility of solving them analytically. 
Furthermore, on the basis of physical considera­
tions we seek solutions that are periodic functions; 
under certain restrictions we are able to obtain 
these solutions in a closed analytic form. 

1. THE GENERAL FORM OF THE NONLINEAR 
GENERALIZED DIRAC EQUATION 

Let us consider the nonlinear Dirac equation in 
its general form,* which has as special cases the 
generalization of the basic Dirac equation by the 
addition of terms :\ ( lPl/J) l/! or :>.. ( lPYsl/J) y 5l/J, first 
suggested by Ivanenko1•2 and by Ivanenko and Miri­
anashvili, 3 or in the case of vanishing rest mass 
by Heisenberg:4 

(1.1) 

and its complex conjugate equation: 

f {i:t ++av+A*(f,ljl)~a}= 0, (1.2) 

where 

fA*W, o/)Pa = (paA(f,ljl)ljl)". (1.3) 

We introduce the usual notation5 

(1.4) 

Then Eqs. (1.1) and (1.2) are written in the forms 

(1.5) 

(1.6) 

The nonlinearity of Eq. (1.1) is contained in 
A ( 1/J*, l/J), which does not depend on derivatives 
and is a function of l/J*, l/J only. By considerations 
of invariance, A ( 1/J*, l/J) must have the form6 

where 

r (l) r(2) rCn>. T(l>rC2> T(n> 
11 ' 12 • • • ln' v1 \12 • • • Vn ' 

(1. 7) 

are, generally speaking, matrices. In addition, the 
invariance of the expression requires that the in­
dices liVi not include any free indices. 

The limitation that we impose here on A ( 1/J*, l/J) 
is that we consider only the case 

A W, o/) ==A ((frj~>o/) (ff)~>o/) ... (ff\~l ljl)). (1.8) 

As is well known, the solution of Eqs. (1.5), (1.6) 
depends not only on x!J-, but also on the spin co­
ordinate s. 

We assume that the solutions of the equation 
allow the separation of the spin and ( four-dimen­
sional) space coordinates. We shall try to find 
these solutions in the form 

ljl =X (s) c:p (x!L), f = x· (s) c:p* (x!L) 

with the condition x* ( s) x ( s) = 1. 
We now introduce the notation 

p (x!L) = c:p (x!L) c:p* (x!L) = r· (x!L). 

Then Eq. (1.8) takes the form 

(1.9) 

(1.10) 

A W, o/) = A ((xT\~> z) ... (z"r)~> x) pn (x!L)) =A (p), (1.11) 

where we have used the faCt that, ( x*rY'x) ... 
( x*r}n)X ), is a numerical quantity which can be 
inclu~d in the constant coefficient of the function 

*The notations are the same as in reference 1 ( 11 = c = 1). pn ( x#J- ) • Thus we get 
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y4A* (f, 1)1) '¥4 = y4A* (p) y. = y4A* (p) '¥4 =A* (p). (1.12) 

Then Eqs. (1.5) and (1.6) take the forms 

{y!J.a 1 axiL+ A (p)) x (s) cp (x!J.) = 0; (1.13) 

x+ (s) {y!J.a I axiL- A. (p)} cp. (x!J.) = o. (1.14) 

2. SOLUTION OF THE NONLINEAR DIRAC 
EQUATION 

On the basis of physical considerations we shall 
look for solutions of Eqs. (1.13), (1.14) in the class 
of periodic functions: 

cp (xiL) = cp ( cr), cr = kiLxiL, k!L (kn, k4), k4 = iw. (2 .1) 

Then we have 

(yiLkiLdl dcr +A (p)) X (s) cp (cr) = 0, 

x+ (s) {y"k!J.dl dcr- A• (p)} q/ (cr) =0. 

(2.2) 

(2.3) 

Let us consider the system of equations 

dcpldcr=-A(p)cpji/., du/ldcr = A•(p)cp.lil-.(2.4) 

As. we see, if cp and cp* are solutions of (2.4), 
then Eqs. (2.2) and (2.3) reduce to a system of equa­
tions for the spin factor of the solution 

(iy!J.k!J. + 1-) X (s) = 0, X+ (s) (iy!J.k" + 1-) = 0. (2.5) 

We supplement Eq. (2.5) with the following two 
equations for the spin* 

(ks- crsk) X (s) = 0, X+ (s) (ks- ask)= 0. (2.6) 

The solutions of the system of equations (2.5) and 
(2.6) are well known. 1 

Let us now return to the solution of the system 
of equations (2.4). We write the functions A ( p) 
and A* ( p) in the formt 

A (p) =a (p) + ib (p), A• (p) =a (p)- ib (p). (2. 7) 

Then Eq. (2.4) gives 

dp 2 b 
{fu= -~ (p) p; (2.8) 

We denote the solution of Eq. (2.8) by p = f ( u), 

*As is well known, in the linear theory one introduces for 
the spin the operator u 'V / ik. The necessity of this is basically 
due to the existence of a superposition principle for the linear 
equations. In a nonlinear theory the introduction of a differen­
tial operator leads to serious difficulties, but because of the 
absence of a superposition principle it is also not necessary. 
We here use the single term u 8k. 

tin A(I/J*, 1/J) the function of i = (-1)'~>, which changes the 
sign of the term with b(p) when one goes from the equation to 
its complex conjugate, can be performed by Ys • In such a case, 
however, one must remove the restriction (1.8) and replace,\ by 
A,. + Ys .\ in Eq. (2.5). 

and substituting it into Eq. (2.4) we get 

dcp I cp =-A (a) dcr I it-, dcp. I cp. =A. (a) dcr I it-. (2.9) 

The solutions of these equations have the form 

-~ =exp {+~A(cr)dcr} (2.10) 

= exp {- +~ b(cr) dcr + + ~ a(cr)dcr}, 

? t • . { . ~ } -;~- = exp -T A (cr) dcr (2.11) 

= exp {-+~ b (cr)d (cr) -:+~a (cr) dcr}, 

p { 2 ~ } -p-;;- = exp - T ~ b ( cr) dcr . (2 .12) 

As we see, the density is determined by b ( p) 
only. From this it follows in particular that for 
b ( p ) = 0 the nonlinear Dirac equation has• no other 
complex solution besides 

(2.13) 

and in the case a (Po) = ko we arrive at an ordinary 
solution of the linear Dirac equation. 

The real solutions of the equations (2. 9) can be 
obtained directly from the solutions (2.10) and 
(2.11). Infact,for a(p)=O wehave 

'I' <p* { 1 ~ } - =-. = exp -T b(cr)dcr • 
'Po 'Po 

(2 .14) 

For b ( p) = 0, if we replace ( iA) by -A' with 
A' 2 > 0, Eqs. (2.9) and (2.5) become7 

dcp I dcr = dcp* / dcr =a (p) cp I 1-' =a (p) cp* I 1-', (2.15) 

(iy"k!J. +(it-')) X (s) = 0, x+ (s) (iy!J.k!J. +(it-')*)= 0, (2.16) 

and the solutions for the spin factors are given by1 

X (s) = D.B(s, z, (0,')), x· = B* (s, z, (it-')") a·, 

B. (s, s, (it-).)= 2~o CVI +sf* (s), (2.17) 

VI- sf(s),s Vl+sf(s), -sVI-sf(-s)), 

t* (s) =VI + (it-')* 2 I K2 , k~= k2 - K2 = '-'2 , K = =f w, 

C0 = VI + "-' 2 I K2 = i k j I K. 

It must be noted that, just as in the linear theory, 
one can choose in the nonlinear theory also two of 
the four amplitudes arbitrarily and determine the 
other two from (2 .5). The expressions for the am­
plitudes will be just the same as in the linear the­
ory, except that the mass k0 is replaced by A. 

In the Newtonian approximation K » A, just as 
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in the linear theory, two of the amplitudes can be 
neglected in comparison with the other two. 8 

3. THE RELATION BETWEEN THE NONLINEAR 
DIRAC AND KLEIN-GORDON EQUATIONS 

Let us consider the Dirac equation (1.5). Apply­
ing to it the operator Yvo/oxv, we get 

Under the restrictions imposed on our present 
problem we have 

(3.2) 

(3.3) 

2 . b( )dA(p) 
=- tp p ~· 

where we have used Eqs. (2.9) and (2.5). Substitut­
ing Eqs. (3.2) and (3.3) into Eq. (3.1), we arrive at 
the equation 

(3.4) 

where 

B (p) = A 2 (p) + i2pb (p) ~ 
(3.5) 

= a 2 - ~ (pb2 (p)) + i2b (p) :P- (pa (p)). 

We also get an analogous relation for the complex 
conjugate function. 

We arrive at the same result if we apply the op­
erator d/da to Eq. (2.4) and use Eqs. (2.8) and (2.1). 

We now suppose that we are given a nonlinear 
Klein-Gordon equation of the form (3.4) and its 
complex conjugate equation. It is required to find 
the corresponding Dirac equation. The problem 
reduces to the determination of A ( p) and A* ( p ) 
in terms of B(p) and B*(p). Equation (3.5) and 
its complex conjugate give a system of nonlinear 
differential equations to determine a ( p) and b ( p) 
in terms of the given values of B ( p) and B* ( p). 

If we introduce the notations 

1 
't =- 11 p, ~ = pa (p)=- -;ra ('t), 

'IJ=Yrb(r)=b('t)IV-'t, (3.6) 

f1 ('t) =- 't-281 ('t), f2 ('t) =-} (- 't)-'1' B2 ('t), 

where 

B1('t)=(B('t)+B'('t))l2, (3.7) 
o# 

Bd't) = (B (")- B' ('t)) l2i, 

then Eq. (3.5) and its complex conjugate can be 

written in the form 

'1jd;ld't=f2('t), 

d7J 2 I d't- ~2 = f 1 ('t). 

(3.8) 

(3.9) 

In the particular case in which f2 ( T) = 0 ( B2 ( T) = 
0 ), the system of equations (3.8), (3.9) is easily 
solved, and we find: 

a)7J=O, ~=Y-fd't); b(p)=O a(p)=YBdp), 

\' 2 'I b) 7J'f:O, ~=~0 , 'IJ={J(f!('t)+~o)d't)', (3.10) 

that is, 

(3.11) 

If, on the other hand, f2 ( T) ~ 0, then the sys­
tem of equations (3.8) and (3.9) can be put in the 
form 

~" - (f~ 1 t 2) ~, + ( 112 g) (~2 - f 1) ~'a = o, 

'IJ = (~ {f 1 ('t) + ~2} d't)'l·. 

(3.12) 

(3 .13) 

In view of the complexity of these equations, how­
ever, it is difficult to find their solution in general 
form. 

As we see, in the nonlinear theory A and B 
are related through (ordinary) differential equa­
tions, unlike the linear theory, in which this con­
nection is purely algebraic. 

On this account, for given B and B* the func­
tions A and A* are determined only to within 
two arbitrary constants if f2 ( T) = 0 and three 
arbitrary constants if f2 ( T) f. 0. A unique con­
nection between B and A can be secured in the 
usual way, by adjoining supplementary conditions 
to the differential equation. 7 

In cases in which one is able to reduce the non­
linear Klein-Gordon equation (3.4), (3.5) to a non­
linear Dirac equation, the solution can be found as 
indicated above. 

I regard it as my obligation to express my deep 
gratitude to Professor D. D. Ivanenko for his con­
stant interest in this work. 
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The dielectric permittivity tensor Eik is usually taken to be a function of frequency alone, 
i.e. one neglects spatial dispersion -the dependence of Eik on the wavelength. However, 
even in non-gyrotropic media spatial dispersion must be considered in cases of weak absorp­
tion, when the refractive index increases rapidly and becomes infinite if dispersion and ab­
sorption are not taken into account. Spatial dispersion is also important in the analysis of 
longitudinal (plasma) waves which propagate in an isotropic medium or along the principal 
dielectric axes in crystals. It is also shown that spatial dispersion leads to a weak optical 
anisotropy in cubic crystals. In addition to the above, an analysis is made of the collective 
(discrete) energy losses in solids. 

1. INTRODUCTION 

IN analyzing the propagation of light and electro­
magnetic waves of longer wavelengths in a medium, 
one usually uses the local relation 

(1.1) 

where D and E are taken at w, the frequency of 
the Fourier components of the electric induction 
and field intensity at the point r. If there is ab­
sorption, the tensor Eik becomes complex and 
D must be replaced by D - i ( 47T/ w) j where j 
is the density of the conduction current. In order 
to simplify the analysis this substitution is implied 
below, but not carried out explicitly. 

The relation in (1.1) does not reflect the nature 
of the field variation in space, that is to say, it ap­
plies only if we neglect spatial dispersion - the 
dependence of the. tensor Eik on the wavelength. 
The spatial dispersion can be characterized by the 

parameter a/"A. = an/"A.0, where a is a character­
istic length for a given medium (molecular dimen­
sions, lattice constants, De bye radius, etc. ) , "A.0 = 
27Tc/w is the wavelength in vacuum, 'A= "A.0 /n is 
the wavelength in the medium and n is the index 
of refraction. In condensed media in the optical 
region usually a/"A.0 "' 1 to 3 x 10-3 so that spatial 
dispersion is negligibly small in most cases.* 
This, however, is not the case if we are interested 
in effects associated with spatial inhomogeneities 
of the field. A well-known example of this type is 
natural optical activity - an effect which is of order 
a/"A.. It will be shown below that taking terms of 
order ( a/"A. )2 into account leads to an additional 
effect - weak optical anisotropy in cubic crystals. 

*The time dispersion, which leads to a dependence of Bik 

on w may be large under these same conditions because it is 
characterized by the parameter w/wj, where Wj is a character­
istic frequency of the medium. 




