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A theory is developed for the energy states of odd nuclei corresponding to collective nucleon 
motion in which the axial symmetry of the nucleus is preserved. It is shown that the energy 
spectrum of the nucleus can be determined by only two parameters. Conditions under which 
the energy spectrum splits up into a system of rotational-vibrational bands are determined. 

IN the articles of Davydov and Filippov1 and Davy- ground state, J is the total angular momentum 
dov and Chaban2 a theory of collective excitations of the nucleus, f3 ~ 0 determines the deviation 
of states of even-even axially-symmetric nuclei of the nucleus from spherical symmetry. 
was developed without assuming that the rotational Equation (1.1) corresponds to the Schrodinger 
energy is small in comparison with the energy of equation 
the surface vibrations. It was shown that the en- {T + v (~)_£}'I"= o, (1.4) 
ergy of excited states in which the axial symmetry 
of the nucleus is not destroyed, can be represented 
by a function which depends on only two par am­
eters; conditions under which collective excitations 
split up into a system of rotational-vibrational 
bands were found. In the present work the theory 
is extended to the case of axially-symmetric odd 
nuclei, having a spin equal to or larger than % in 
the ground state. 

1. COLLECTIVE EXCITATIONS OF ODD NUCLEI 
WHICH PRESERVE THE AXIAL SYMMETRY 
OF THE NUCLEUS 

According to the unified model of the nucleus, 3 

in the case of strong coupling the classical energy 
of collective motion of the nucleus is obtained after 
averaging the energies of the interaction of exter­
nal nucleons with the nuclear surface over the 
states of motion of the external nucleons. In the 
case that interests us - motion which preserves 
the axial symmetry of the nucleus ( y = 0, ha are 
good quantum numbers) - this energy can be 
written in the form 

E = T + V(~). (1.1) 

T = ]12B~2 + 1;_2 {J (J + 1)- K2} I 6B~2, (1.2) 

v (~) = 112 q2 +A~+ 1;_2D I 6B~2. (1.3) 

where C and B characterize the properties of 
the nucleus, A and D depend on the number of 
external nucleons and on the state of their motion, 

K = J 3 = ~ ha is the spin of the nucleus in the 
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T = - 2;;. {a~ (~2 a: ) + 3 si1n e a~ (sin 6 a~ ) 
1 [ a• a• a• J 1 a• } (1.5) +3sin2 fl ~+ 2 cosOa'f>a<jl + a<j>• -3---av. 

The solution of Eq. (1.4) can be obtained in the 
form 

(1.6) 

J where J = K, K + 1, ... ; DMK are the general-
ized spherical functions which are the irreducible 
representations of the rotation group. 

Substituting Eq. (1.6) into (1.4) we see that the 
functions UJK should satisfy the boundary condi­
tion 

u J/((0) = 0 (1. 7) 

and the equation 

{--~.--:!:_ + V (~<)+ 1i2 [J(J + 1)- K (K + 1)] _ E} = O 
28 d~2 K t' 6B~• u JK • 

where 
(1.8) 

VK = 112q2 +A~+ t,2(D + K)16B~2 (1.9) 

= VK(~K) + 1I2CK(~- ~K)2 

The quantities f3K and CK which enter into Eq. 
(1.9) can be expressed in terms of A, B, C, D 
and K by means of the equations 

~K =-A I c + 1L2 (D + K) I 38 ~k. 
CK = C + 1L2 (D + K) I B. 

However, it is more convenient to consider them 
as some parameters characterizing the nucleus 
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in the ground state (J = K). Then Eq. (1.8) can 
be put in the form 

[ !2 d' J 
-28 7;32 + WJF\"{~)- 8 UJK = 0, (1.8a) 

where E = E - V K ( .BK), 

W JK (~) = C2K (~- ~K)2 -1- !• [J (J + 1~~~ (K + 1)] (1.10) 

1 
:=::::; w JK (~JK) + 2 CJK (~- ~Jd. 

Here 

~J/( = ~K + k2 [J (J + 1)-K (K + 1)] I 3BC/(~J/(, (1.11) 

c1/(= c/( + (t• 1 B~~K) rJ (J + 1)- K (K + 1)J. (1.12) 

WJ/( (~JK) (1.13) 

= 1/.CK(~JK-~K)2 + 1 2 [J(J -1- 1) -K(K -1- 1)] j6B ~)f<. 

After introduction of the dimensionless param­
eters* 

'I ~~--ll = ~K(BCK/12) ', ~ = ~JK/~K > 1, w0 = v CK/ B, 

Equations (1.11) to (1.13), respectively, take the 
form 

es(~-1) = [J(J + 1) -K(K + 1)1 I 384, (1.11a) 

C1x = CK(1 + [J (J + 1)- K (K + 1)] 1 ll4 ~ 4),(1.12a) 

WJK(~JK) /two (1.13a) 

= lf.ll2 (e- 1)• + [J (J + 1)-K(K + 1)1 I 682~2. 

H·J/2 

1.5 

1.0 

H=l/Z 

1.5 

10 

[:5 
I J 4 J 0 

*From Eq. (1.8a) follows that for J = K the square of the 
amplitude of zero-point vibrations fj!, =1i/2 yBCK· T4us, the 
parameter 8 = f3K(2{J!0)"'h is proportional to the ratio of the 
value of f3K, which defines the equilibrium form of the nucleus 
in the ground state, to the amplitude of zero-point vibrations 
of the nuclear surface. 

Substituting Eq. (1.10) into (1.8a) we find 

{ 'li2 d2 1 
- 2B ~ + 2 CJK(~- ~JK) 2 (1.14) 

- [e- WJK(~JK)J}u1x= 0. 

In order to determine the eigenfunctions and eigen­
values of Eq. (1.14) we introduce the new variable 

~ = ~al (~- ~JK) 1 ~Jx, of= o4CJK 1 cK. 

which varies in the interval ~o 1 :s t > oo, and the 
new function v ( t) using the relation 

u1K(~) = v(C)exp(-~ 2/2). 

Then the function v ( t) will satisfy the equation 

v" (C)- 2(v' (q + 2vv (C) = 0, 

e-WJKOJK) 1 
V= --

kwJK 2 ' (1.15) 

= (CJK)'/, = [ 1 + J (J + 1)- K (K + 1) ]'/, 
00JK B 00o , 1)4~4 

and the boundary condition 

v(-~ili)=O, exp(-C 2/2)v(C)-'>-0 for ~-'>-oo. (1.16) 

The solution of Eq. (1.15) satisfying Eq. (1.16) can 
be put in the form 

Vv (~) = aHv (C), (1.17) 

where 

are Hermitian functions of the first kind. Here the 
energy of collective motion of the nucleus will be 
determined by the formula 

_e:_ = ( +If) [1 + J (J + 1)- K (K + 1) ]''• 
'kw v 2 3'~• 

0 1l 2 (~-1)2 J(J + 1)-K(K + 1) (1.18) 
+ 2 + 61l·~· • 

The quantum number v ( which is, in the general 
case, not integral) is the kernel of the transcend­
ental equation 

(1.19) 

The quantities ~ and 01> for given J and K, 
are determined using Eqs. (1.11a) and (1.12a) 
through the parameter o. For o > 2, o1 Rl o. 

2. SPECTRUM OF COLLECTIVE EXCITATIONS 
OF ODD NONSPHERICAL.NUCLEI 

In the preceding section it was shown that the 
energies of collective excitations (for which the 
axial symmetry is preserved) of odd nonspherical 
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J Energy level, kev 
Nucleus 

I I 
n'"•· kev a 

Theoret. Exptl. Theoret. Exptl. 

Tb159 3/2 3/2 0 0 I [•] 5;2 5;2 57.6 57 
7;2 7j2 130 136 353 2.43 
3/2 3/2 364 364 
5/2 - 440 -

Gdl67 3/2 3;2 0 0 
["] 5/2 5/2 55 55 732 3.5 

7/2 7/2 130 131 
3/2 - 732 -

Eul53 5/2 5/2 0 0 
['·"] 7;2 7/2 84 84 

9/2 9/2 184 194 700 3.31 
11/2 - 300 -
5/2 5/2 700 700 
7/2 - 805 -

RelS7 5;2 5;2 0 0 
['·"] 7;2 7j2 134.6 134.6 

9/2 9/2 294 300 
11;2 - 473 - 910 2.99 
5/2 - 910 910 
7/2 - 1075 -

u2aa 5/2 5/2 0 0 
[•] 7/2 7;2 40.1 40.1 

9/2 9/2 92 92.8 476 3.988 
11/2 - 151 -
5/2 - 476 476 
7/2 - 528 -

N poll"' 5;2(-) 5/2(-) 0 0 

} 3.99 
r• ·"·'l 7 /2(-) 7 /2(-) 33.1 33.1 

9/2(-) 9/2(-) 78 76.1 433 
5!2(-) - 433 433 
7 /2(-) - 476 -
5/2(+) !:i/2(+) 59.8 59.8 
7 /2(+) 7 /2( +) 103.2 103.2 
9 /2(+) 9/2(+) 1!57.6 1!57.2 

11 /2(+) 11/2(+) 220.2 224 433 3.60 
13/2(+) 13/2(+) 289 303 
5/2(+) - 492.8 -

Th22• 5/2 5/2 0 0 
t•·•] 7j2 7j2 43.2 43.2 

9/2 9/2 98.2 100 
11/2 11/2 163.2 164 5!)!) 4.0 
5;2 - 555 -

Hot•• 7j2 7/2 0 0 
[•] 9/2 9/2 94 94 

11/2 11/2 217 216 
13/2 - 356 360 989 4.06 
7j2 - 989 989 
9/2 - 1108 1100 

u••• 7j2 7j2 0 0 
['] 9/2 9/2 46.5 46.!5 

11/2 11/2 10!5 104.3 
13/2 - 168 172 379 3.63 
7j2 - 379 379 
9/2 - 436 430 

Lul'• 7j2 7j2 0 0 
['·' ·"] 9j2 9/2 113 113 

11;2 11;2 248 250 
7j2 - 990 - 990 3.80 
5/2 5j2 342 342 
7j2 (5/2, 7/2) 431 431 
9!2 - 540 -
5;2 - 1332 -

nuclei can be represented by the formula (1.18) de­
pending only on the two parameters w0 and o. 

%, respectively. From the figure it follows that 
for some values of o the spectrum of collective 
excitations of the nucleus splits up into a system 
of rotational-vibrational bands. 

The values E/tiw0 are given on the figure as a 
function of the parameter o for K = %. % and 
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In the table a comparison is given between the 
theoretical values of the excitation energies of the 
first and second rotational-vibrational bands of ex­
cited states of odd nuclei and experimental data. 
There the values of the parameters nt.;0 and o, 
used in the calculation of theoretical values, are 
also given. 

Comparing the spectrum of collective excitations 
of odd nuclei with the spectrum of collective exci­
tation of even-even nuclei, it is possible to draw 
the following conclusions: (1) The break-up of col­
lective excitations into a system of rotational­
vibrational bands in odd nuclei sets in for lower 
values of o than in even-even nuclei; (2) The 
values of the parameter w0, which can be called 
the frequency of vibration of the nuclear surface, 
in the ground state is smaller in odd nuclei than 
in even-even nuclei having the same value of the 
parameter o. 

For o > 3 the quantity v takes on values near 
to integral ones 0, 1, 2, .... ; further, according to 
Eq. (l.lla) one can approximately set 

~ = I + g [J (J + I)- K (K + I) I I 3o4 • 

Then Eq. (1.18) can be replaced by the approximate 
equality 

eftiw0 = (v + 1/ 2) + [J (J +I)- K (K +I)] j6o2 

-a[J(J+I)-K(K+I)J2/o6 • (2.1) 
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The form of the distribution function of a system of electrons is studied in the Hartree approxi­
mation near the Fermi surface, for the case of a weakly inhomogeneous distribution. It is 
shown that in this region the inhomogeneity has a particularly strong effect, so that the cor­
rect expression for the distribution function, as given in this paper, is decidedly different in 
this region from the expression usually employed (that calculated from the Thomas-Fermi 
model). It is pointed out that the latter expression is completely unsuitable for use in prob­
lems in which the neighborhood of the Fermi surface plays an important part. 

As is well known, the distribution function (the 
density matrix in a mixed representation) is the 
most important quantity characterizing a many-

particle system. By means of it one can calculate 
without difficulty quite a number of physical quan­
tities for the system in question. 




