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The possibility is discussed of the existence of an electron structure and its description from 
the viewpoint of the linear theory of extended particles, and also from the viewpoint of non­
linear theory. Both variants of the theory lead to similar results for the interaction of the 
electron with the proton, the neutron and light nuclei; however, according to the nonlineary 
theory, the interaction of two electrons at very short ranges must be essentially different 
from the interaction of the electron with the positron. 

RECENTLY, experiments on the scattering of 
fast electrons on protons1•3 have revealed a devi­
ation from the usual formula of Mott3 which is 
valid for two point particles with strong Coulomb 
interaction. The character of these deviations 
point to a failure of the purely Coulomb law of 
interaction at very short ranges. Hofstadter and 
others1•2•4 have shown that to explain the experi­
mental results, it is enough to assume that, in 
contrast to the electron, the proton is not a point 
particle, but that its charge and magnetic moment 
are distributed in space according to some law. 2 

However, although contemporary theory does not 
suggest sufficient arguments in support of the ex­
tended electron, still it is not excluded that part 
of the Hofstadter effect might be connected with 
the structure of the electron (which a number of 
authors assume2•5 ). The difficulty of infinite den­
sity is avoided in the theory of the extended elec­
tron and the so-called classical radius of the elec­
tron6 r 0 = e2/mc2 = 2.8 x 10-13 em takes on a 
physical significance. 

On the other hand, experiments on the scatter­
ing of fast electrons on protons could be explained 
by the hypothesis that there are nonlinear effects 
of the electromagnetic field at short ranges. We 
shall consider both possibilities and shall attempt 
to explain how future experiments could clarify 
the actual nature of the short-range interactions. 

1. LINEAR THEORY OF EXTENDED PARTICLES 

The Interaction of the Electron and Proton 

We shall consider throughout only the interac­
tion of electrical charges which under the experi­
mental conditions of Hofstadter3 play an important 
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role at small angles of scattering. Furthermore, 
we shall consider the charge distribution in the 
proton Pp ( r 1 ) and in the electron Pe ( r 2 ) to be 
spherically symmetric ( r 1 and r 2 are distances 
from the center of the proton and electron, respec­
tively). 

We can then write the interaction energy of the 
extended proton with the extended electron, whose 
centers are separated a distance r, in the form 

where Pp ( r 1 ) and Pe ( r 2 ) are normalized to 
unity. 

Integrating over the angles in (1), we get: 

00 

V(r) =- '~ + 4~_e" ~pp(r1)rl(r1 -r)drl 

(1) 

co r-f-r, co (2) 
+ S1t~e"_ ~ pp (r1 ) r 1dr1 ~ dr2 ~ Pe (r~) r~ (r~- r2) dr~. 

0 lr-r,l r, 

For the case of scattering of fast electrons on 
protons, the relativistic Born approximation3•4•7 

d _ ( Ze2 )2 cos2 (0 1 2) I f (a) l2 2 . f tr 
0 - \ 2£ ~in4 (6 1 2) '1 7t SID j 1 J 

gives results only slightly different from the val­
ues of the effective cross sections given by the 
exact formula, 4•8 while the dependence on the spe­
cial features of the interaction at short ranges, 
i.e., on the structure of the particles, is deter­
mined by the form factor2• 7 

co 

f (0) = - 2~~ ~ sinK~r V (r) r2 dr. (3) 

0 
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Substituting (2) in (3) and integrating by parts, we 
get 

0> 

f ( 2me2 { \ sin K r " 6) = h'K2 47t ~ ----xr pp (r) r· dr 
0 

(4) 

We now assume that only the region Kr « 1 is 
significant in these integrals, because of the rapid 
fall-off Pp and Pe· That is, the momenta p = liK 
at large distances are not large, which, in any 
case, is satisfied for energies that are not too 
large. Then, substituting both terms of the expan­
sion in the first term of (4), we obtain 

(5) 

In the second term of (4), limiting ourselves to the 
first term of the expansion, we get 

-(6) 2a0 {I K2 (f 2 -1- 1 2 )} t = (aoK)' - 6 ,rp; , ,fe) , (6) 

where a0 = ti2/me2 is the Bohr radius, 

(r~>=~pp(r)r2 dv, (7) 

00 0> 

(r;; = ~ Pe (r) r2dv = 6 · 8r.2 ~ rdr ~ pp (r1) r1dr1 
0 0 

X rr dr 2 rPe (r;) r~ (r~- r 2) dr~. (8) 
lr..:.....rtl rz 

The latter equation is obtained by integration of 
the right side of (7) (by parts) with account of 
the normalization condition for Pp· 

The difference between (5) and the correspond­
ing formula that does not take the dimensions of 
the electron into account lies in the presence of an 
additional term proportional to < r~ >. Thus, if 
we assume the non-point character of the electron 
then the experimental value for the rms radius of 
the proton2 (R0 = 0.8 x 10-13 em) must be the 
square root of the sum of the mean squares of 
the radii of the proton and electron: R0 = 

.J <r~> + <r~> . 
Furthermore, in order to agree with experiment 

at much higher energies, when the expansion (5) is 
no longer a good approximation, it is necessary 
that the extended electron and proton interact ex­
actly the same as, under the assumption of a point 
nature for the electron, the electron interacts with 
an extended proton with charge distribution Po 
(according to recent data, Po is best represented 

by an exponential2 ) , i.e., that 
0> 

~(Po- Pp) r1 (rl- r) dr 
r 

co r-t-r1 co 

= 27t ~ Pp (r1) r1 dr1 ~ dr2 ~ Pe (r~) r~ (r~- r2) dr". 
I r-r, I r, 

Similarly, the effect of structure of the electron 
would manifest itself in the displacement of the 
electron levels in the hydrogen atom. 9 The dis­
placement of the electron levels connected with 
the structure of the proton and electron, in first 
approximation, without consideration of the defor­
mation of the electronic wave functions and rela­
tivistic corrections which are not appreciable in 
the case under discussion, 10 is equal to 

11E = -~I 'f. (r) \2 {V + e2 I r} dv. (9) 

Inasmuch as the sum V + e2/r falls off rapidly at 
distances much smaller than the radius of the Bohr 
orbit, we can remove the square of the wave func­
tion of the electron for the n-th state of the elec­
tron 1/Jc from under the integral sign setting it 
equal to its value at zero. Substituting in (9) the 
value of V according to (2), and integrating by 
parts, similarly to what was done previously, 9 

we get 

11E = ~ I ~Jle (0) 12 { (r~) + (r~) }, (10) 

where ~E is expressed in em - 1• 

Interaction of the Electron with Other Particles 

Employing a method similar to the above, we 
can show that at relatively low energies the scat­
tering cross section of neutrons on electrons 
(through electrostatic interaction) depends only 
on the rms radius of the charge distribution in the 
neutron, namely: 

f (6) = - 2a0 (r~) I a~. (11) 

The elastic scattering cross section of electrons 
on deuterons at relatively low energies depends not 
only on <r~>. <r~> and <rft>. but also on 

<rb> = jii/Jpl2 r 2 dv,9 where 1/Jp is the wave 

function of the proton in the nucleus of deuterium: 

The displacement of the electrons of the n-th level 
in deuterium is determined by the same form fac­
tors, namely 

11En = T I ~Jle (0) 12 {(r~) + (r~) + (r~)- (r~)}. (13) 



INTERACTION BETWEEN THE ELECTRON AND OTHER PARTICLES 267 

It follows from (13) and (10) that the volume part 
of the Lamb shift,11 equal to the energy difference 
between (13) and (10), does not depend on the di­
mensions of the electron and the proton: 

D.Eo-D.En=; l~e(O)I2 {(r5)-(r~;}. (14) 

The difference in the elastic scattering cross sec­
tion of electrons on deuterons and on protons de­
pends approximately on the same difference < rb > 
- < r& >. If the charge distribution in the positron 
were the same as for the electron, the effects of 
structure in its interaction with other particles 
would be the same as for the electron. 

Characteristic Energy and the Dimensions of the 
Electron 

The electrostatic energy 3C of the electron with 
charge distribution Pe can be written in the form 

:lt = 8~ ~ Pdv = e2 I -tR., (15) 

where we have used Gauss' theorem and the notation• 

1 rp,(r)dvf 
·-1- = ~ --,- ~ Pe (r1) dv1 • 

-I R. 0 0 

(16) 

Further, assuming that 

(17) 

where m0 is the rest mass of the electron, 'r/ is 
the ratio of the field mass of the electron to its 
total mass, we have, by (15), 

-tR.=rol'11• 
where r 0 is the classical radius of the electron. 

We shall show that for any non-alternating 
Pe ( r), the rms radius 2Re ::;: v' < r~ > ought to 
be larger than -lRe/2. Above all it can be estab­
lished that for fixed values of ~~Re the rms radius 
2Re has a minimum value for uniform charge dis­
tribution over the volume.* But the Coulomb en­
ergy of the charge, uniformly distributed over the 
volume of a sphere of radius a, is equal to 3e2/5a, 

* For proof, we write on the one hand, 

_1_ = "'- = _!__ r £2dv= ~-I ( d'[J )2r•d· -tR e2 81t ~ 2 j dr '' 

since E =-grad Cfl·12 On the other hand, according to the fore­
going [see the derivation of Eq. (10)], 

00 

2 R2=(r2)=6~ (<p-+)r 2dr. 
0 

Now, constructing the function 2R2 - .\/ -:R and varying it. in 
Cfl, we obtain 00 

aJ = ~ {6r2 - 2~ ! (zr2 ~~ )}a'P dr. 
0 

Then, setting the variation equal to zero, we find V'2 q~ = 6/.\ 
= const; this means that the density of charge distribution 
must be constant. 

and, consequently, _}Re = 5a/3, whereas 2Re = 
v'3/5a . Consequently, 2Re ~ (%)3/2 -lRe, or 

(18) 

If neither the charge distribution of the proton 
Pp nor the charge distribution of the electron Pe 
are alternating, then the rms radius of the elec­
tron 2Re should in every case be not larger than 
the value of R0 = 0.8 x 10-13 em obtained by Hof­
stadter. But then the inequality (18) can be satis­
fied for 'r/ > 1. 75; 'r/ must be > 1 for other con­
siderations also. The extended electron cannot be 
stable and undeformed in strong external fields in 
the absence of additional internal forces that are 
large in magnitude, forces of attraction of a non­
electromagnetic character; therefore the non-field 
mass of the electron must be considerable. 

2. NONLINEAR THEORY 

General Properties of a Nonlinear Field 

In the nonlinear theory there is no need of con­
sidering the electron to be an extended particle. 
If the electromagnetic field has a nonlinear char­
acter6•13-16 that appears at short ranges, then this 
is equivalent, in a well known sense, to the pres­
ence of structured particles. We shall first attempt 
to make clear in what measure the requirements of 
the theory and the experimental data limit the choice 
of the Lagrangian. In order that the Lagrangian of 
the field L be invariant, it must be a function of 
the invariants of the electromagnetic field, consist­
ing of the derivatives of the potentials of the elec­
tromagnetic field. 6•16 An invariant which consists 
of the components of the potentials All- must not 
be contained in the Lagrangian; otherwise we would 
not arrive at equations of the Maxwell type. We 
shall further consider L to be a function of only 
a si11gle invariant I = f/1-vf/).v consisting of the com­
ponents of the antisymmetric tensor 

(19) 

Furthermore, by forming the action integral and 
varying it with respect to the variable Av and 
A/1-,V = fJA/1-/axv, then equating to zero the vari­
ant of the action integral, we obtain Euler's equa­
tions:16 

apiJ.V I dxu = 0, (20) 

where 

On the other hand, as a consequence of the anti­
symmetry of the tensor f/1-v we get 

~i_~ 1 
dL = 2 at df.Lv = - -· PiJ.vdf IJ.V• (22) 

IJ.V ' 2 
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The invariant properties of the Lagrangian rela­
tive to a transformation of the coordinates allows 
us to write it in a much simpler form. In order 
to show this, we carry out an infinitely small trans 
formation of the coordinates: 16•17 

for which the potentials AfJ. and their derivatives 
are equal to 

We also find that 

and the Jacobian of the transformation is equal to 

a (Xr, X~, Xa, x4) I a (xl, x2, x3, x4) = 1 + za~i'-lax!l. 
From the invariance of the Lagrangian under a 
coordinate transformation, it follows that 

~ (L + oL) dx =·~ L dx (23) 

(the integration is carried out over all four vari­
ables), whence, taking it into account that 
PafJ.A 1}J2 ~v/8xa8xfJ. = 0 by virtue of the antisym­
metry of PaJJ.• we get (by equating tne expres­
sions for d~a/dxfJ.): 

Furthermore, the energy-momentum tensor of the 
electromagnetic field can be determined in the 
usual fashion; it can be shown that in the case of 
nonlinear electrodynamics the same conservation 
laws will be satisfied as in the case of the linear 
theory.6•16 Moreover, Laue's theorem is valid. 
The Hamiltonian of the nonlinear field, which is 
of interest to us, can be written in the following 
form: 

(25) 

We now proceed to the usual vector description 
of electrodynamics, defining the electric field in­
tensity E and magnetic field intensity H, and 
the corresponding inductions D and B, as 

(26) 

B=V4r;{f23• fat• fd, H=V4r;{p23• Pat• Pd· 

Then the Euler equations (20) and the integrability 
conditions 

at !LV I axa + at va I axil + at a[J. I axv = 0 

(which follow from the special choice of the func­
tions ffJ.v) give the Maxwell equations in their 
usual form. 6•14 •16 However, while in the linear 
theorem, for the case of a vacuum, E = D, B = H, 
these relations are no longer preserved in the non­
linear theory. In fact, 

or, 

D = s (!) E; H = s (!)B. (27) 

In the usual notation, the expressions for I, L and 
H44 take the following form 

I=- (P- B2) I 8r;; 

L = (1/Src)(- DE+ BH); 

H, 4 = (1/8rc) (DE+ BH). 

(28) 

(29) 

(30) 

The Equivalent Charge Distribution and the Effec­
tive Radius of Nonlinearity 

We shall show that the Lagrangian of the non­
linear field can also be given with the aid of the 
density distribution of the equivalent charge of 
the linear field. For this purpose, we consider 
a special static case. Let there be a point charge 
e. The solution of the equation div D = 47TeO ( r) 
is D = er/r3• We now compare the nonlinear field 
E = D/ E (I) with the linear field Elin which is 
equal to it at all points of space. It is obvious that 
the source of Elin could be any distribution p~ 
of the same charge e (generally speaking, not a 
point distribution), while, in accord with Gauss' 
theorem: 

r 

er 1 ' 
Eun = ·-,a~ Pedv. 

0 

But since, by assumption, E = Eun at each point 
of space, we can write 

r (e'{D')'f, 

E = D ~ p:dv= D ~ r:dv, (31) 
0 

since r = ( e2 /D2 ) 1/4• But then, by (29), 

L = -~; l"rp~dv (32a) 

in the static case, and 
(e2/81t/,)ll, 

L =I ~ fJ~dv (32b) 
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in the general case, in which I1 = ( D2 - H2 )/871" 
and consequently, L is invariant. As is seen 
from the latter equations, the Lagrangian can ac­
tually be written with the aid of functions of the 
equivalent distribution p~. 18 Such a form of the 
solution turns out to be more useful for subsequent 
analysis. We express the total energy of the field 
3C = J H44 dv as a function of the equivalent distri­
bution of charge p~, making use of Eqs. (30) and 
(31), and carrying out the integration by parts. We 
obtain 

(33) 

In the case of the nonlinear theory, it is natural to 
assume that the mass of the electron has a purely 
electromagnetic origin i.e., that 3C = m0c2• But 
it then follows from (33) that 

-1Re = ro/2. (34) 

We shall show that for an arbitrary Pe ( r) which 
changes sign nowhere the rms radius of distribu­
tion of the effective charge is larger than _1Re. 18 

For this purpose, we write 2R2 = <r~> in the 
form 

and we show that the factor in front of _1R-2 is 
not smaller than unity or, otherwise, that 

To do this, we introduce the notation cp ( r) = p~r2 , 
write F in the form of the limit of the sum 

F =lim~~ rp(r;)r7t:.r1 [~r.p(ri) b..:.ll- [~r.p(r;) t:.r1]
3

} 
lt~l 1~1 I . t=l 

But, inasmuch as 

3 3 ' 3 ) 1( ) (rt + Tj + Tk- TtfjTk ':":-~- T; + Tj + (ft 
>< [(r;- ri)2 + (ri- r~t)2 + (rh- r;) 2 ] :;> 0, 

then F :::: 0, and consequently, 

2Re > -1Re = ro/2. (35) 

The latter equation is similar to Eq. (18) of the 
linear theory of the extended electron. If the dis­
tribution Pp is not alternating in sign, then, as 
can be shown, 2Re should not be larger than the 
rms radius of Hofstadter, R0. But this would con­
tradict the inequality (35), since R0 < r 0 /2. Thus, 
either p~ or Pp (which is less probable from 
the viewpoint of meson theory19 •4 ) must change 
sign. This is the essential result of the nonlinear 
theory. 

Particle Interaction in the Nonlinear Theory 

The problem of particle interaction in the non­
linear theory is more difficult than in the linear 
theory. In the nonlinear theory it is difficult to 
separate the characteristic energy from the energy 
of interaction. The interaction energy between two 
(for example, point) particles is no longer equal 
to the product of the charge of the first particle by 
the potential created and the charge of the second 
particle at the location of the first particle (in its 
absence). In a similar fashion, the usual expres­
sion for the Lorentz forces can be shown to be un­
satisfactory. For interpretation of the experimental 
data, it is important to know the law of interaction 
between the particles. Therefore, we consider the 
interaction between two charged particles, in the 
general case of attraction, with the charge distri­
butions p1 and p2• We make use of the fact that 
in the nonlinear theory the induction vectors add 
linearly, as before: D = D1 + D2, which is not 
valid for the fields. In this case, 

(36) 

Furthermore, in accord with Eqs. (30) and (31) we 
can write down the expression for the total field 
energy in the following form: 

velD 
.7i = ~H44dv = 8~ ~ (D~ + D: + 201·0 2) dv ~ p'dv', 

0 

where p' is the density of the equivalent charge 
distribution. Then, computing the energy of the 
free field (the sum of the characteristic energies 
of the isolated noninteracting particles) 

lrefD, lr efD2 

:lt0 = 8~ ~ Didv ~ p'dv' + 8~ ~ D~dv ~ p'dv, 
0 

we get the "pure" interaction energy: 

W ~ :lt- :lt0 = Wn + W12 + W22· (37) 

Here I 

r 3 

\\711 = 8~ ~ D~dv ~~p'dv', (38) 

r 1 
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where 

' r 3 

\\7 12 = 4~ ~ 0 1 • D 2 dv ~ p' dv' . 
0 

' r 3 

\\722 = ;7t ~ mdv ~~p'dv', 
r 2 

x is the angle between the vectors r 1 and r 2. 

(39) 

(40) 

(41) 

It is easy to establish the fact that in the tran­
sition to ordinary electrodynamics and to point 
particles, we obtain W = W12 = e1e2/r12 . We now 
consider the special case of the interaction of the 
proton with the electron. We shall assume that 
the dimensions of the proton (for example, as a 
consequence of the interaction with the meson 
field) are much larger than the dimensions of 
the electron, which we shall consider to be a point 
(this means that r2 = r 2). Let the nonlinearity ap-

appear only in the small region r 0, so that J p' dv' 
0 

~ 1 for all r > r 0, while r 0 is less than the ra-
dius of the proton. We shall show that in this case 
the expression for the interaction energy of the 
particles (37) is materially simplified. From the 
locations of the first particle (the center of the 
extended proton ) and the second particle ( the 
electron) we draw spheres of radius r 0• The fol­
lowing two cases are then possible, depending on 
the distance between the particles: (a) the spheres 
do not overlap or (b) they do overlap. We consider 
the first case, in which r 0 ::;:; r/2 ( r = distance 
between the particles). In the region r 2 < r 0, 

r3 ~ r 2 [see (41)], since r 2 > r!, inasmuch as r1 
[as follows from its definition, see Eq. (41)] can­
not be smaller than the radius of the proton rp, 
which in turn is larger (by assumption) than r 0• 

In the region r 2 > r 0, r3 is not smaller than 
1/ ( r21 + ri)1), which is in any case larger than 
r 0, and since r 2 > r 0, then, not changing the 

r3 
value of the integral J p' dv', we can substitute 

0 
the upper limit for r 2. 

In similar fashion, we can consider the case (b) 
and show that for one reason or another we can re­
place r3 by r 2. We then have approximately 

\\712 = 4~ ~ D1·D2 dv ~'pdv'. 
0 

Substituting the values for 0 1 and 0 2 from (36) 
(and taking it into account that now 02 = er2 /r~) 
we have 

(42) 

But this coincides in form with the interaction of 
two extended particles in the linear theory: the 
proton with a charge distribution Pp and the elec­
tron with the distribution p'. In other words, Eq. 
(1) and the consequences obtained in Sees. 1 and 2, 
for the effective cross section and displacement of 
the electronic levels in the atoms, remain valid in 
this case. 

An estimate shows that the correction term to 
(42) is ! ( r 0/rp )2 times smaller than the princi­
pal term; the term W11 amounts to less than 
!(r0/rp)3 part of W12 , while W22 is t(r0/rp) 
part. 

In the case of the interaction of two electrons, 
the terms W11 and W22 are still quite substantial 
at distances of the order of the effective radius of 
nonlinearity. An important peculiarity of the non­
linear theory is the difference of the scattering 
cross section of positrons on electrons from the 
scattering of electrons on electrons, since in the 
case of the interaction of particles of identical 
charge sign, W12 is added to Wu and W22• 
while for the interaction of differently charged 
particles, W12 is subtracted from the sum W11 

+ W 22 . A similar effect ought to appear in the 
scattering of positrons on a proton, by comparison 
with the scattering of electrons. However, if the 
radius of nonlirlearity is smaller than the larger 
of the radii of the proton and electron, the effect 
of nonlinearity would show itself to be negligible. 
On the other hand, inasmuch as from the viewpoint 
of the nonlinear theory p~ ( or Pp )· must be 
charge alternating, this would necessarily lead to 
peculiarities in the angular distribution. 

The possible corrections can be deduced with 
the aid of the dynamic effects, although in principle 
the interaction of the electric charges under the 
experimental conditions1•2 must be distinguished 
from the two effects.4 A more precise calculation 
of the radiative corrections must also be carried 
out, both for the case of the linear theory of the 
extended electron and in particular for the non­
linear theory. However, improving the precision 
of the calculations of the radiative corrections, 
which are relatively small in magnitude,20 almost 
never leads to a serious change in the results 
obtained. 
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The heating of electrons in a plasma in a variable electric field is considered. It is shown 
that the electron gas can exist in two stable states with different temperatures; the transition 
from one state to the other takes place at certain critical values of the field and is accompa­
nied by an appreciable change in the electron temperature. A peculiar type of hysteresis takes 
place in the dependence of the electron temperature on the field amplitude.and frequency. The 
influence of a constant magnetic field on this effect is also taken into account. An expression 
is obtained for the complex conductivity of the plasma in variable electric and constant mag­
netic fields (with account of interelectronic collisions). 

l. We consider an unbounded plasma placed in a 
spatially homogeneous electric field. We assume 
that the plasma is sufficiently strongly ionized 

that the principal influence on the distribution of 
the electrons is that due to collisions between elec­
trons and between electrons and ions; we shall con-


