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the corresponding values computed from the data 
of Ivanova and P'ianov4 on the angular and energy 
distributions of the cascade nucleons. These data 
were obtained in the calculation of the cascade for 
uranium at the proton energy of 660 Mev with the 
Monte Carlo method. In the calculation the cre
ation of mesons was neglected. 

The table shows qualitative agreement between 
the computed and experimental values. It should 
be kept in mind that the experimental values refer 
only to fission experiments. 

From the experimental value for the parallel 
component of the momentum of the nucleus we 
can determine the excitation energy of the nucleus 
under the assumption, as in references 5 and 6, 
that the momenta of the cascade nucleons are 
transferred by way of one fast cascade particle 
in the direction of the incident proton beam. With 
our data, this gives Ef = 240 Mev for uranium 
with Ep = 660 Mev. This surpasses the value 
"' 160 Mev of reference 6. Under the assumption 
that two fast cascade nucleons are emitted in the 
direction of the proton beam and perpendicular to 
it the measured values for the parallel and per
pendicular components of the nucleus momentum 
yield for the excitation energy the value 'Ef :::: 
145 Mev. It is seen that the presence of the per
pendicular momentum component leads to a sig
nificantly lower value for Ef. It is obvious, 
however, that the second variant represents an 
extreme approximation just as the first variant 
does. It must also be pointed out that the perpen
dicular component of the momentum of the nucleus 
should be considered in the investigation of the 
angular distributions. The irregularity in the 
angular distribution of the fission fragments of 
bismuth in the 60 to 90° region in the laboratory 
system, found by Wolke and Gutman, 7 may pos
sibly be explained by this fact, as these authors 
also noted. 

In conclusion the author expresses his grati
tude to Prof. N. A. Perfilov for a number of criti
cal remarks, and toN. S. Ivanova and I. I. P'ianov 
for making available the computational data on 
the angular and energy distributions of the cas
cade nucleons of uranium. 
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THE problem of constructing the nucleon potential 
with the inclusion of multiple interactions by sum
ming over the corresponding terms in the pertur
bation expansion was considered in reference 1 in 
the framework of pair mesodynamics. 

In the present paper, an expression for the ef
fective potential for the multiple interaction of two 
particles is found in closed form. The discussion 
is based on the usual methods of Feynman and 
Dyson under the assumption II E I - m I « m. In 
the expansion for the energy of the free particle 
(e.g., the electron) 

I En I = m + p~/2m + ... 
(here, as in the following, n = c = 1) we can 
therefore restrict ourselves to the first term 

(1) 

I En I ~ m. It is easily seen1 that in this case the 
Green's function for the electron has the form 

SF '2 1) ~ 1 + f3 • ( _ ) -im (t, -t,) 
~ , ~ 2 o r1 r2 e , 

SF (2,1) = 1 -;-[3 0 (rl- f2) /m(ti-t,), t2<t1. 

We note that the approximation (2) does not 
imply a transition to a theory with fixed sources 
( m - oo), since the Green's function sF would 
then depend only on the time. 

(2) 

Using (2) and carrying out all calculations in 
the coordinate representation, we obtain for the 
case of a process of order 2n, where the inter-
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acting particles interchange n virtual quanta, 

s<2n) = e2 (- :2r-l ~~ d3rld 3r21 rp (rl, r2) 12 

00 

X ~ ~ dt1dt 2 [DF (xl-x2)t. 

Summing over n and introducing the effective 
potential, 2 

00 

S "' s<2n) ·I\' d3 d3 • ( i-+f = L.J =- t jj r1 r2rp1 r1, r2) 
n-1 

t 

X U (I r1- r2j) rp1 (rl> r2) lim \ eivt, dtl> 
i-+00 J 

-00 

where v = Ef- Ei = 0. We find, finally, 

c;' , , DF 
U(r) = ie2 \ Dp(r, t)dt, DF = F 

.\ 1+r0AD 
-00 

(3) 

(4) 

(5) 

where r 0 is the classical electron radius, A. is 
the Compton wavelength (in our notation sF and 
DF are equal to !sF and !DF in reference 2, 
respectively). 

Such simple results were obtained only by ex
cluding the poles of type [ m 2 - ( w2 + ... + Wk )2 ]-1 

for processes involving n virtual quanta, keeping 
in mind the character of the app;roximation, i.e., 
I w2 + . . . + wk I < m. It can be shown that these 
restrictions have, in any case, no bearing on the 
finiteness of the potential at the origin, which 
follows from (5): 

U(r)=e2/Vr2 +R2 , R=Vr0f-/1t (6) 

The form of expression (6) agrees with the poten
tial proposed in reference 3. We have 

U (r) Jr-o = m V 7tiX, ()( = 1/137. 

In the calculations for the pseudoscalar meso
dynamics with pseudoscalar coupling the order of 
the time integrations has to be changed; but the 
final result agrees with Eqs. (3) to (5): the nucleon 

00 

potential depends on the distance like J ~F (r, q dt, 
-oo 

where 

M is the mass of the nucleon, and G is the coup
ling constant. 
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IF the interaction between slow negative pions 
and nuclei is considered as a perturbation to the 
Coulomb potential of a point source (see refer
ences 1 and 2), it is possible to estimate the po
tential of the meson-nucleus interaction. Denoting 
by v ( r ) the deviation of the interaction potential 
from its Coulomb value, we obtain, to first order 
of perturbation theory, the total shift ~Enz of the 
mesonic-atom leve~ 

00 

~Enl = ~ I 'Ynl (r) 2 V (r) r 2dr, (1) 
0 

and the phase TkZ of scattering of a slow pion by 
a nucleus denoted by. Iz in reference 1), becomes 

00 

''<~ =- ~:- k ~ I rpk 1 (r) j2 v (r) r2dr. (2) 
0 

Here k is the wave number of the meson, and 
v ( r) differs from zero only when r ::::: rz [ rz = 
( li/ J.W) A 1/ 3 is the nuclear radius ] and depends 
little on the energy in the low-energy region 
("' 1 Mev); 'l'nz ( r) is the wave function of the 
bound state in the Coulomb field, which has the 

( li2 n) 
following form as r/Rnz- 0 2Rnz = J.te2 z 

'Ynz (r) = [2n (~n!l ~ 1)! r (21 ~ 1)! ( R:z f ( R:z y (3) 

and <PkZ ( r) is the regular wave function of the 
continuous spectrum in the Coulomb attraction 
field, which becomes, as ( kr) - 0 

, /2 (kr) 1 

rpkl (r) = Jl 1t cl (21 + 1)!!' 

l 

2 27t I a I IT ( ex') . 
Cz=1-exp{-27tlo:l} 1+;,2' 

s~l 

(4) 


