
SOVIET PHYSICS JETP VOLUME 35 (8); NUMBER 5 MAY, 1959 

Letters to the Editor 

ON A POSSIBLE STATISTICAL DESCRIP­
TION OF SYSTEMS OF PARTICLES INTER­
ACTING WITH THE FIELD 

Iu. L. KLIMONTOVICH 

Moscow State University 

Submitted to JETP editor April 11, 1958; 
resubmitted July 3, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 1276-1277 
(November, 1958) 

T 0 investigate the emission of electromagnetic 
waves by charged particles in dielectrics and de­
celerating media, we consider the kinetic equa­
tions for systems of electrons and oscillators of 
the transverse electromagnetic field, It is as­
sumed that the charge of the electrons is compen­
sated by a uniformly distributed background of 
positive charge. 

A state of the system in question is determined 
by the coordinates and momenta of the electrons 
and the coordinates Qk and momenta Pk of the 
field oscillators with the various wave numbers k. 
We introduce a distribution function f (qt. ... , 
qN, P1, · · ·, PN• Qk, ... , Pk, ... , t) which gives 
the probabilities of different states of the system .1 

To obtain the kinetic equations for the first elec­
tron distribution function f1 ( q, p; t) and the first 
field-oscillator distribution function F 1 ( Qk, Pk; t) 
we construct a suitable chain of equations connect­
ing distribution functions of different orders. The 
approximation of the higher distribution functions 
in terms of the lower is carried out in the same 
way as in the paper of Bogoliubov and Gurov.2 

If the initial distribution of the field oscillators 
is the equilibrium distribution and the electrons 
are in near-equilibrium state, we get for the dis­
tribution function f1 an equation of the Fokker­
Planck type in the phase space: 
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where the diffusion coefficients Ba,a and the sys­
tematic friction coefficient A are given by the 
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following expressions: 

e2xT \ ( k·P) Bo.fl = ~.) o wk - m akaaklldk, 

e2 \ • ( k•P) c A= :btm ~ u w"- m a"(ah·p)dk, (r)k = yek. (2) 

In Eq. (1), n is the number of electrons in unit 
volume, and € is the dielectric constant of the 
medium. The region of integration in the last term 
of the left member of Eq. (1) is restricted by the 
condition I q- q'l :s c ( t- t 0 )/ El/2, which comes 
from the fact that we are considering the problem 
in which the distribution functions of the electrons 
and field oscillators are prescribed at the initial 
time t0; therefore, owing to the finite speed of 
propagation of the interaction, the change of the 
distribution function f1 at the point q at the time 
t can be affected only by the states of the electrons 
at distances less than or equal to c ( t- t0 )/ €1/2 

from the point q. In Eq. (1), only the interaction 
of the electrons with the transverse electromag­
netic waves has been expressed separately. 

The coefficients Ba,a and A are nonvanishing 
only when the condition for Cerenkov radiation is 
satisfied. The coefficient A gives the decelera­
tion of a particle with momentum p by the field. 
After integration the expression for the deceler­
ating force takes the form 

(e/c)2 ~ (1- c2m2/p2ro) (•)kdwk 

and agrees with the well known expression of the 
theory of Cerenkov radiation.3•4 

We note further that in the equilibrium case 
the Maxwell distribution satisfies Eq. (1). 

Under the inverse conditions, with the electrons 
in equilibrium and the oscillators close to an equil­
ibrium state at the initial time, we get for the dis­
tribution function of the oscillators an equation of 
the Fokker-Planck type in the phase space of the 
coordinates and momenta of the field oscillators. 
In the equilibrium case the solution of this equa­
tion has the form: 

p<~> = Aexp {- PV2xT- wiQi/2xT}. 

By means of this equation we get the a\teraged 
equation for the coordinates of the oscillators. 
For example, for a uni.form distribution of the 
electrons this equation has the form: 

Qk + 2rQk + n!Qk = o; Qk = ~ Qtf 1 (dQ~dPk), (3) 

where 

We have also considered the more general case 
in which neither of the subsystems (electrons and 
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electromagnetic oscillations) is in a state of ther­
mal equilibirum. The results obtained will be ap­
plied in the study of the radiation emitted from 
electron beams passing through decelerating sys­
tems. 

We take occasion to express our gratitude to 
Academician N. N. Bogoliubov for his interest in 
this work. 
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THE effective cross section for the ela·stic scat­
tering of particles with spin 2 by a heavy Coulomb 
center can be found by analogy with the theory for 
electrons (see reference 1). The relativistic wave 
equations for free particles with spin 2 can be writ­
ten, taking into account their irreducibility to the 
Hamiltonian form, (see, for example, references 
2 and 3) 

(jzVz + x) ljl = 0, (1) 

and in first order perturbation theory, the effective 
cross section for elastic scattering of particles with 
spin 2 and charge e from a heavy nucleus with 
charge ze becomes 

_ 4z2e4k0 C G (ko + k~) , 3 , 

cr - c"h2k J (k- k')4 (k + k') 0 (k - k) d k • (2) 

(3) 

Here and in the following primed quantities refer 
to the final state of the particle, after scattering. 

The matrix y4 and the matrix A of the in­
variant bilinear form for spin 2 particles are 

known; 3 they are of the thirtieth degree. The other 
three matrices y a are easily found from the 
"coupling" formulas found by Fedorov, 3 and the 
irreducible representations of the Lorentz group, 2 

use being made of the relations y a = i [ I0a, y 4 ] , 

where the I0a are the infinitesimal operators of 
the representation. 

In calculating the quantity G, it is not neces­
sary to know the matrices Yz explicitly. The 
wave functions can be classified by their spin pro­
jections and normalized by their charge, l/J*Ay4l/J = 1 
(the normalization l/J* Al/J = 1 leads to the same 
final result) with the help of the method proposed 
by Fedorov,4 using an invariant form. In this meth­
od, we do not use the functions Brs• which describe 
the state with rest mass mr and projection of spin 
on momentum s, but use instead the matrices T = 
arf3s, where ar=a+=P+(a)/P+(K), f3s= 
Qs ( S )/Qs ( s) can be determined by the minimal 
polynomials of the operator a = ikzYz and the 
operator S = (i/21 k I) oa{3alf30k.a (a, {3, a= 1, 
2, 3) which projects the spin on the momentum 
of the particle: 

P(rx.) = rx,3(rx.2-x2) = (rx.+x)P± (rx.) = 0, (4) 

Q (S) = S (S2 - 1) (S2 - 4) = Q. (S) (S- s) = 0. (5) 

The method of reference 4 leads to the formula 

G = (k~/5k0) ~ Sp (rx.+ A'ltrx.'+Ai4~~,)/Sp (rx.~Aitrx.'+Ai•~:,). (6) 
s' 

Even with this method, the calculations involved 
in finding G are tedious. In calculating the traces 
which occur in the numerators and denominators of 
the terms in G, it is helpful to remember the struc­
ture of the matrices (3~, and of the other factors. 
The matrices {3~, are quasi-diagonal, while each 
of the matrices a+ Ayt, a+Ay4 , a+Ayt can be 
written as the sum of two matrices in such a way 
that each of the terms arising from multiplication 
have zero in the quasi-diagonal part corresponding 
to the quasi-diagonal part of {3~'· All five denomi­
nators in the fractions of (6) turn out to be differ-
ent (in the nonrelativistic case they are all equal 
to 5k0), but it is much easier to calculate them 
than the numerators. 

Equations (2) and (6) give the following formula 
for the differential elastic scattering cross section: 

z2r~ 
dcr = -=~,---;o-,c--c-'~~----,--,c=-=,---- {(7- 14<:2 - 166s4 

960e:• (1- 5e:2 + 4e:4) 2 sin4 (6;2) 

+ 722s6 - 4ls8 + 832<:10 + 756s12 + 64~;:14) + (s2 - 1) 

X (3 -15s2 + 15s4 + 4ls6 + 660<:8 - 576<:10 - 128s12) cos21i 

+ 4 (s2 - 1)2 (- 1 + 9s2 - 28<:4 + 49s6 - 45s8 + 16o:10) 

X cos41i + 4 (s2 -1) [(1 + 2s2 - 44s4 + 140s6 + 21ls8 + 50s10) 

+ (s2 --1) (1- 9s2 + 31<:4 + 27s6 - 50s8 ) cos2 6] cos ll} dQ,<7) 


