
SOVIET PHYSICS JETP VOLUME 35 (8), NUMBER 6 JUNE, 1959 

THE SHAPIRO INTEGRAL TRANSFORMATION 

CHOU KUANG-CHAO and L. G. ZASTAVENKO 

Joint Institute for Nuclear Research 

Submitted to JETP editor May 5, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 1417-1425 (December, 1958) 

We give an integral transformation which is related to the decomposition, into irreducible 
representations of the proper Lorentz group, of the representation according to which the 
wave function of a particle with mass M and spin s transforms. 

THE problem mentioned in the abstract was stated k' /k' by 
and solved in 1955 by I. S. Shapiro. 1 Unfortunately, 
he used a wave-function transformation law which 
is incorrect for s > 0 (the transformation law for 
the spin under a pure Lorentz transformation2 ), 

and thus the equations he obtained can be used only 
for spin zero. 

In this paper we solve Shapiro's problem for 
arbitrary spin using a wave-function transforma
tion law previously obtained;2 the principles by 
which the integral transformation is obtained are 
the same as those used by Shapiro. 

In the first two sections we state some known 
facts which we shall need later.2•3 In the third and 
fourth sections we derive the integral transforma
tion. 

1. IRREDUCIBLE REPRESENTATIONS OF THE 
PROPER LORENTZ GROUP 

Let 

(1.0) 

be the 4-momentum of a particle with mass 0, and 
let 

ko= (OOkk). (1.0') 

Obviously k = R ( n) k0, where R ( n) is the rota
tion* which carries the third axis into the direction 
given by n = k/k; if 8 and cp are the spherical 
angle coordinates of n, we may write 

R (n) = Ra (rp + 1t I 2) Rd8), (1.1) 

where R3 (a ) is a counterclockwise rotation about 
the 3-axis through an angle a. Let k' = Sk, where 
S is a transformation of the Lorentz group. We 
shall denote the relation between n = k/k and n' = 

*In what follows we shall always denote by R a pure rota
tion (or the matrix in the appropriate function space corre
sponding to such a rotation); L will denote a pure Lorentz 
transformation. 
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n' =Sn; (1.2) 

then n' = S1n and n" = S2n' implies that n" = 
S2S1n. Arbitrary transforma~ion t of the Lorentz 
group can be written in the form 

t = rK, (1.3) 
where Kn0 = n0 in the sense of (1.2), and r is a 
pure rotation such that rn0 = tn0 [ again in the 
sense of (1.2)]. Here the choice of n0 is arbitrary; 
(1.3) obviously determines r up to an arbitrary 
rotation about the n0 direction. We shall choose 
n0 as the unit vector along the third axis; we de
fine r by the condition r = R3 ( cp1 ) R1 ( 8 ), which 
means that cp2 = 0, and then the factorization im
plied by (1.3) is clearly unique. 

Now let x' = Sx. It is well known that if H ( x) = 
x0 + ( v· x) and b ( S) is the matrix corresponding 
to S in the 2 x 2 representation of the Lorentz 
group, then H(x') = b(x)H(x)b*(S). If we now 
choose x = k0 [see Eq. (1.0')] we see that in the 
2 x 2 representation a K transformation of the 
type in (1.3) is represented by a matrix of the form 

K = c~l :::) . (1.4) 

We now define the transformation K ( S, n) by ap
plying (1.3) to the matrix t = s-1R(n) (the defini
tion of R ( n) is given in (1.1)): 

s-1R (n) = R (S-1n) K (S, n) (1.5) 

[the vector s-1n is defined in (1.2)]. Applying 
both sides of (1.5) to n0, we see that in the pres
ent case r = R ( s-1n ). 

Further, making use of the uniqueness of the 
factorization given by. (1.3), we find that K ( S, n) 
has the property that 

K (S2 , n) K(S1, S21n) = K (S2S1, n), (1.6) 

which we shall need later. 
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Consider the association 

f (n) _!_ ..... f' (n) =(X (S, n) f (S-1n). (1. 7) 

Let us find the properties that a ( S, n) must sat
isfy in order that this association form a represen
tation of the Lorentz group. We have 

f' (n) __!: ... f" (n) =IX (S1, n) f' (St""1n) 

= (X (Sl, n) 0( (S, St""1n) f (S-1Si""1n). 

It is thus necessary that 

"'(S1o n)"' (S, S!1n) =(X (S1 S, n). (1.8) 

It is seen from this that we may choose as · 
a ( S, n) any matrix element [K ( S, n )h2 to any 
power [see (1.4) to (1.6)]. Thus 

(X= I k22 la exp {i arg k22 ·b}. 

Now (1.4) implies that if k' = s-1k, then I k221 2 = 
I kIll k' 1. Denoting the association k- n = k/1 k I 
by 

lk I= k (n), 

we may write I k ( S, nh212 = k (n)/k ( s-1n). 
Further, let us write* 

arg k22 = 1!2 cp (S, n), 

so that a ( S, n) becomes 

*Let us study the angle cp(S, n) in more detail. 

(1.9) 

(1.9a) 

(a) S = R. In this case the definition of cp(s, n) in (1.9a) 
is equivalent to 

R-1R (n) = R (R-'n) Ra ('fl(R, n)). (1.9b) 

(b) S = Lp [the definition of Lp is given in (2.1)]. Let the 
rotation R(L, n) be defined (clearly not uniquely) by 

L -tn = R (L, n) n. (1.9c) 

Then 
L - 1R (n) = R (L, n) R-1 (L, n) L -tR (n) 

= R (L, n) R (n) {R-1 (n) R-1 (L, n) L-1R (n)}. 

The transformation in curly brackets does not alter the direc
tion of the 3-axis. If we take advantage of its arbitrariness and 
choose the rotation R(Lp, n) to be about the axis parallel to 
p x n, the k22 matrix element of the transformation in the 
brackets will be real. (To see this we note that the expression 
in curly brackets is equal to R-1 (LPo' n 0 ) L~10 • Here p0 is ob
tained from p by the same rotation as leads to n., the unit 
vector in the direction of the 3-axis from n. The proof is 
completed by a simple calculation involving the matrices of 
the 2 x 2 representation.) The angle cp(L, n) therefore satis
fies the relation 

R (LP' n) R (n) = R (R (Lp, n) n) Rs ('!' (Lp, n)). (1. 9d) 

The angle involved in the rotation R(Lp, n) is given in the 
Appendix. 

(Xmp (S, n) = [k (n) I k (S-ln)]HP I vmcp (S,n). (1.10) 

Equations (1. 7) and (1.10) define the complete 
set of representations of the proper Lorentz group, 
with p taking on all complex values, while m 
takes on only integral and half-integral values. 3 

It can be shown that all these representations are 
nondecomposable and that all except those for which 
ip is an integer are irreducible; they are all ine
quivaient, except for pairs one of which has param
eters p and m, and the other of which has param
eters - p and - m. It is easily shown that when 
p is real, (1. 7} gives a unitary representation of 
the Lorentz group in the sense that for such repre
sentations one can define a scalar product 

(f 1> f 2) = ~ f~ (n) f 2 (n) dD. (n), 

which remains invariant under (1. 7), i.e., which is 
equal to 

(f~, f~) = ~ [ k ~i~!n) T dQ (n) f~ (S-1n) f2 (S-1n). 

Indeed, we note that 

[k (n)]2 dQ (n) = [k (S-1n)] 2 dQ (S-1n). 

Then writing s-1n = m, we obtain ( f1f2) = (f1f2). 
These unitary representations form the so-called 
first class of unitary representations of the Lorentz 
group. 

The Lorentz group also has another set of uni
tary representations (the second class), but for 
our purposes only the first will be necessary. 

2. THE TRANSFORMATION OF THE SPIN UNDER 
PROPER LORENTZ TRANSFORMATIONS 

Let Lp (or Lp) be a pure Lorentz transfor
mation such that 

(2.1) 

where p = ( p, E ) , and Po = ( 0, M). 
Let S be any Lorentz transformation. We shall 

write the transformation SLp as a product of·a 
pure Lorentz transformation and a rotation, i.e., 
SLp = LR. It is easily seen that here L = Lsp· 
One can thus consider the formula 

SLp = LspR. (S, p) (2.2) 

to be a definition of the rotation R ( S, p). 
It is easily shown that 

R. (S2St> (S2S1)-1 p) 

= R. (S2, S;:1p) R. (S1, (S2SI)-1p). (2.3) 

From this one easily finds that the association 

'YsM (pa) _!_...., 'Y:M (pa) = R." (S, S-1P)00.'YsM (S-1p, a') (2.4) 
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(where Rs is the matrix whi~h represents the ro
tation R ( S, s-1p) in the ( 2s + 1 ) -dimensional 
irreducible representation of the three-dimensional 
rotation group4 ) gives a representation of the 
Lorentz group. This is the representation accord
ing to which the wave·function l¥sM (p, a) of a par
ticle with mass M and spin s transforms. 

3. INTEGRAL TRANSFORMATION 

Let us now br~ak up the representation sM de
fined by {2.4) into irreducible representations pm 
[see (1.7) and (1.10)). 

For the representation sM we can define the 
invariant scalar product 

~ ~ 'f"* (p, a) 'f" (p,cr)d3p I Ep, 
a 

so that in decomposing sM we,can obtain only 
unitary representations.* Thus the desired de
composition leads to the integral transformation 

s <X> 

'f"pa= ~ ~dp~dQ{n)Ypmn{p,a)fpmn 1 (3.1) 
m=-SO 

s "" r tflp ' (3.1a) 
fpmn = .LJ ) E Ypmn {p, a) 'Ypa• 

0'=-S p 

The kernels Ypmn (p, a) and Y' must satisfy 
the following condition. If l¥pa ~ fpmn according 

to (3.1) and (3.1a), and if l¥pa.§.l¥pa according to 

(2 .4) and fpmn .§. fpmn according to (1. 7), then 

l¥pa :o= fpmn according to (3 .1) and (3 .1a), for all S. 
We may write this as the following condition on 
Ypmn (p, a): 

R! (S, s-1P)aa.Y pms-ln (S-1p, a') 
(3.2) 

= [k(n)lk(S-In)]-I-iP/2/mrp (S,n>ypmn(P, a). 

The inverse kernel Ypmn (p, a) satisfies a simi
lar condition if we write 

Y~mn {p, a) = Cm~Y;,mn (p, a), 

and if (3.2) is satisfied. 
Let us first set p = 0 and S = R in (3.2). Then 

Rs (S, s-1p) = Rs (R) is simply the matrix corre
sponding to the rotation R. In this case (3.2) gives 

R" (R)aa'YpmR-•n (0, a') = eimrp (R, n>ypmn {0, a). 

Comparing this with (1.9b) and recalling that 
R3 ( cp) aa' = e -iacp Oaa' , we find that 

Ypmn (0, a)= R" (n)am• (3.3) 

Further, let us set S = Lp in (3 .2). Then 

*In fact, only representations of the first class. 1 

and we obtain 

( E -P·n)-1-iP /2 . (L l 
Ypmn{p,a)= ~ e-lnl<p P·"YpmL-In(O,a). 

p (3.4) 

Noting that in (1.9c) R ( Lp, n) n = Lj)1n, we can 
rewrite (3.4), using (3.3), in the form 

(
E -p•n)-I-iP/2 

Y pmn (pa) = ~ R~a· (Lp. n) Ra•m (n). (3 .5) 

Let us now prove that the Y kernel as defined 
by (3.4) satisfies (3.2). We do this by inserting 
(3 .4) into (3 .2). The left side then becomes 

R (S, s-1P)aa•Ra•m (L;.~p • .)1n) exp {- imrp (Ls-•p, s-1n)} 

X {k (S-1n) I k (L;.\p, s-1n)}l+iP/2' 

while the right side becomes 

exp {imrp (S, n)} [k {n) I k (S-1n)]-l-iP/2 [k (n) 1 k (L;1n)]H'P12 

X exp {- imrp (Lp. n)} R (L(; 1n)am 

According to (2.2), SLs-tP = L R ( S, s-1p). 
Therefore 

k (L~•pS-In) = k [R-I (S, s-Ip) Lp-In] = k (Lp-In), 

since a rotation does not change the magnitude k. 
Thus the factors k on both sides cancel. Further, 

R (S, s-IP)aa•R(L'S-~ps-In)a•m 

= R (S, .)Ip)aa•R [R-I (S, .)Ip) L;1n]a•m = R. (Lp-In)am 

X exp {- imcp [R-I (S, .)Ip), R-I (S, s-Ip) Lp-In]}. 

Thus the rotations on the right and left are also 
equal; we are left with the angles cp. We use (2.2) 
to write the last angle obtained in the form 

cp [R.-I (S, S-1p), Ls..!-,Ps-In]. 

To this we must add cp ( Ls-tP, s-1n); according 
to (1.8) and (2.2), their sum is 

cp [Ls-•pWI (S, s-Ip), s-In]= rp [S-ILp, s-In]. 

Taking the angle cp ( S, n) from the right to the 
left and adding it here, we obtain cp ( Lp, n); the 
same angle remains on the right. This completes 
the proof. 

4. CALCULATION OF Cmp 

We have thus arrived at the mutually reciprocal 
integral equations 

'YsM (p, a) = ~ ~ dpdQ (n) [(£p -p·n) J M]-1-IP/2 

m 

X R.aa' (Lp, n) Ra•m (n) f pm (n); (4.1) 
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f pm (n) = Cmp ~ ~ ~: [(£ P- pn) 1 M]-l+iP/2 
a 

XRaa' (Lp. n) Ra•m (n) 'YsM (pcr) (4.2) 

[see Eqs. (3.1) to (3.5)]. 
To find the still undetermined factor Cmp• let 

us rewrite (4.1) and (4.2) in the form 

ll (p- p') o (n- n') ilmm' = Cmp 'P' [(Ep- p-n) f Mri+iP/2 
• p 

X [(Ep- p·n') ( M]-1-ip'/2 

X Raa•(Lp. n) Ra•m (n) Raa' (Lp, n') Ra•m•(n'). (4.3) 

We now multiply both sides of (4.3) by Ram'(n'), 
sum over m', integrate over dQ ( n'), and choose 
n = n0 along the 3-axis. We thus obtain 

0 (p- p') Oma = Cmp ~~; [(Ep-p•D0 ) I M]-I+iP/2 

X [(Ep- p·n') I M]-1-ip'/2Ram (Lp, Do) Raa (Lp. n') dQ. (n'). 

In this expression we write R ( Lp. n') = R ( p/p) x 
R ( Lp0, n") R -t ( p/p). Here Po is directed along 
the 3-axis, and n" is obtained from n' by the 
same transformation which carries p into p0• 

Since p·n' =p0 ·n" and dQ(n') =dQ(n"), we 
have 

o (p- p') oma = Cmp \ ~3P [(Ep -p•no)l M]-Htp/2 

J up 

X [(Ep- Po·n") I M]-1-iP'/2 

X Ram (Lp, !to) Raa. (pIp) R,!J (pIP) R,!J (Lp,n") dQ. (n"). 

We shall first perform the integration over the azi
muth angles, writing 

dD. (p) =sin 6 d6 d9, dD. (n") =sin 6" d6" drp". 

According to (1.1), R ( p/p) = R3 ( cp + 1r/2) Rt( 0). 
According to Appendix A 

R(Lp, Do)=R3(rp-rr/2)Rt(rx(p, t))R31 (rp-rrl2), 

R (Lp,n") = R3 (rp" + 11: 12) R1 (rx (p, t")) R31 (rp" + 1t 12). 

Here t = p · n/p = cos e and t" = p • n" /p = cos 0", 
while the angle a (p, t) is defined [see Eqs. (A.2) 
to (A.4) ]. Since R3 ( cp )nm = onm exp { - incp}, 

co 1 1 

X ~ p~; ~ dt ~ dt" [(Ep- pt) I M]-HiP/Z 

0 -1 -1 

«, a 

X U~a. (rx (p, t")) u!a (6) il~" (6) Oam; 

here the u~n ( x) are functions defined by Gel'fand 
and Shapiro.4 By making use of the properties of 

these functions,* this equation is easily transformed 
to the form 

00 1 1 

( 1 I 2rr)2o (p- ~') = Cmp ~ P~; ~ dt ~ dt" [ (£ P- pt) 1 M]-HiP/2 

0 -1 -1 

X [(Ep- pt") I M]-l-iP'/2 

X.~ U~a. [oc (p, t) + 6] U~a. (oc (p, t")) a:na. (6), 

(4.4) 

or· 
00 

(21tr2o (p - p') = Cmp ~ p~dp ~ F u.p's (p) f ma.ps (p), 
{) p a • 

where 
1 

Fa.p's (p) = ~ [(Ep- pi")/ M]-1-iP'/2U~a. (rx (p, t")) dt"; 
-J 

1 

f ma.ps (p) = ~ [(Ep- pt) I M]-HiP/2U~a. [oc (pt) + 6] U~a. (6) dt. 
-1 

We now calculate F aps ( p). We do this by using 
the power series 

u~ .. (oc) = L a~a.Xq, 
q 

where x = 1 +cos a, and 

q (-)•-q (s + q)! 
asa. = "---'---'----'"---'-'---

2q (q- a.)! (q +a.)! (s- q)! 

The calculation gives 

F ( ) _ 1 { ~ q 2q+I q cos ('Ap I 2) + (p I 2) sin (:Ap 1 2) 
a.ps ,p - P LJ asa. q• + (p 1 2)" 

q 

+ Qcxps (p)} • 
(4.6) 

Here cosh:.\= Ep/M, and Qaps (p) can be rep
resented in the form A (p, p) cos (:.\p/2) + 
B ( p, p) sin ( A.p/2), where A and B are func
tions bounded for all p > 0 and approaching zero 
as p- <Xl as 1/p uniformly in p. 

We now evaluate fmaps ( p). To do this we 
make use -of the series 

u• ma. (6) = ( 1 + x) I (m +«)I 2 I ( 1 - x) I (m- «J/21 

x = cos6. 

Using (A.5) and (A.6), we find that for I m ± a.l ~ 0 

* u~n (6) = (-1)s-m in-m [2• (s- m)!]-1 

X [(s + n)! (s- m)! I (s- n)! (s + m)!]'l• (1- x)<m-n)/Z 

X (1 + x)-(m+n)/2 (d I dx)s-n (1 - x)s-m (1 + x)•+m, X= cos 6; 

u~n (6) = u~m (6) = u:_n-m (6); 

~ u;, .. (61) u~n (62) = u~n (61 + 62). 

"' 
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If mcxps (p) I < const I pl+a, (4. 7) 

where a is the smaller of I m ± a 1. We rewrite 
the sum in (4.4) in the form 

= ~u;," [:x (pt) + 6] u;," (8) u"mm (1X') 

" 

a-rm 

Because umm = U-m-m. we see that a·= -m 
does not enter into the last sum. Using the summa
tion theorem for the Umm functions, we can write 
(4.4) in the form 

00 

0 (p- p') = (27r) 2C17,p ~ p;dp { F mp's (p) F m- ps (p) 
0 p 

+ ~ f mcxps (p) [f cxp's (p)- fmp's (p)] }· (4.8) 
lcx!+l ml 

It follows from (4.6) and (4. 7) that only the prod
uct of tP.e principal parts of Fmps and Fm-ps 
contributes to the o -function. All the other parts 
of the integral in (4.8) can only give a finite contri
bution (which must cancel in the sum). Thus 

00 

0 ( _ ') ~ (27t)2C \' d). "' q cos {l.pl2) + (p I 2) sin {l.pl2) 
p p mp J ~ q2 + (pI 2)2 

0 q 

X "' q' cos {l.p'l2) + (p'l2) sin {Jp'l2) 2q+q'+2 q q' 
"'-1 (q')• + (p'/2)2 asmasm• 
q' 

Since 
00 + ~ cos (f..pl2) cos (f..p' /2) df.. 
0 

00 

= -,}- ~ sin (f..pl2) sin (f..p' /2) d). = o (p - p') 
0 

and 
00 

~ cos (f..pl2) sin (f..p'l2) df..:::::. 0, 
0 

we arrive at 

_1_ _ 3 [ qq' + (pl2)2] a~ma~~2q+q' 
c - 16'1t .L [q• + (pl2)2j[{q')•+ (pi2)"J • 

mp qq' 

It follows from this that (see Appendix B) 

(4.9) 

5. CONCLUSION 

Thus our final result is that if a relation of the 
form (4.1) exists, the inverse relation is given by 
(4.2) with Cmp given by (4.9). In these equations 

Ep = ( M2 + p2 ) 1/2, the rotation R ( n) is defined 

by (1.1), and R ( Lp, n) is defined by (1.9c) and 
by specifying the direction of its axis perpendicu
lar to both p and n. By R~b we denote the ma
trix elements of the ( 2s + 1 )-dimensional irre
ducible representation of the three-dimensional 
rotation group which correspond to the rotation R4 

Equation (4.1) gives the expansion of the wave 
function 'lFsM (p, a), transforming like a wave 
function of a particle with spin s and mass M 
according to the s, M representation [see (2.4)] 
in terms of the functions fpm ( n), transforming 
according to the irreducible representations of 
the proper Lorentz group. Equation (4.2) gives 
these irreducible components of 'lFsM (p, a) in 
terms of the function itself. 

The authors express their gratitude to Profes
sor M. A. Markov for his interest in the work. 

APPENDIX A 

Let a be the vector of the rotation R ( Lp, n), 
so that 

R (Lp, n) n =cos IZ•D + [axn] sin a I IX+ a (a·n) (1 -cos IX) I IX2• 

From the conditions 

L;1n = R (Lp, n) n and IX~ [pxn], (A.1) 

which determine R ( Lp, n), and from the formula 

Lj;1n = [nM + p (p·n) I (Ep + M)- p] [E P- (p-n)]-1, 

which is implied by (1.2) and (2 .1), we easily arrive 
at 

~. -~[1+ M ] 
ll sm at- EP + ,.. E • ,, P- (p·n) 

This leads to 

(E -pofl +M)2 

1 +cos at = (Ep ~ M) (Ep _ P•n)' 

p'- (p·n)• 
1 - cos at = (E P + M) (E P _ p.n). 

It is now easily shown that 

1 +cos(oc+6) = (Ep-p)(1 +t)I(E-pt), 

1-cos(oc + ll) = (Ep + p) (1-t)I(E -pt), 

where t =cos e = p ·n/p. 

APPENDIX B 

We shall here prove (4.9). We have 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 
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s ""' q' q' with Umm = LJ a x , we ·see that 
q' 

2 

A 1 ~ d s q-1 q =- XUmmX 2q 
0 

When q > m, integration by parts shows simply 
that Aq = 0. When q = m, we easily obtain 

A = (-)s-m (s-m)!(2m-1)! 
m (S + m)! 2ma;'m2m 

Thus 
1 

L} = m2 + (p/2)2 ' 

q,q' 
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