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Certain relations connected with the covariance of field equations under transformation of 
variables are derived. The connection between coordinate conditions and invariance of the 
field Lagrangian is established. The geometrical and physical properties of the coordinate 
systems corresponding to the coordinate conditions thus derived are considered. 

As is well known, only six of the ten equations in 
Einstein's theory of gravitation are independent, as 
a consequence of the conservative character of the 
Einstein tensor (and mass tensor ) . Therefore, 
when obtaining the fundamental field tensor, four 
additional relations among its components must be 
stated beside the Einstein gravitation equations and 
boundary conditions.* Since the choice of these four 
additional relations fixes the coordinate system in 
which the gravitational field will be studied, they 
are usually referred to as the coordinate conditions. 

In contradistinction to the covariant character 
of the Einstein gravitation equations, the aggregate 
of additional conditions should not be covariant, 
since a covariant system of equations admits of 
arbitrary coordinate transformations and therefore 
determines the quantities sought only within four 
arbitrary functions. At the same time the covari­
ant character of the Einstein gravitation equations 
permits one to choose arbitrary coordinate condi­
tions (provided they do not contradict each other 
or the gravitation equations) and so the question 
arises: which of the permissible coordinate condi­
tions are preferable when the peculiarities of the 
given physical problem are taken into account? 
Closely connected with this is the study of the 
physical and geometrical properties of the coor­
dinate system chosen; it is scarcely possible to 
give a consistent physical interpretation of the 
solution of the field equations without the knowl­
edge of these properties. 

The above problems, which have been repeat­
edly investigated (see, e.g., reference 1), form 
the s~bject of the present work (Sees. 3 to 5). At 
the same time certain general problems connected 
with the covariance of field equations under trans­
formation of variables are investigated (Sees. 1 
and 2). 

*It is also necessary to give the equation of state of the 
masses under study (see, e.g. references 1 and 2). 

1. CONSEQUENCES OF COVARIANCE OF FIELD 
EQUATIONS 

We start with the investigation of arbitrary 
fields whose equations may be written in the La­
grangian formalism 

ay n a aY 
a-·-"'-a·-a(a a l =0 (/=1,2, ... ,m), 
ql Li xh ql/ xh 

(1) 
k-1 

where :£ = :£ { [ xiJ, [ qj ], [ oqjloxiJ) is the field 
Lagrangian, [Xi] stands for the aggregate of the 
independent variables { i = 1, 2 ... n) , and [ q j ] 
stands for the aggregate of the unknown functions 
{j=1,2 ... m). 

To establish just what consequences follow from 
covariance of the field equations let us pass in 
Eq. {1) from the variables Xk { k = 1, 2 ... n) and 
ql { l = 1, 2 ... m) to the new variables xk:, qz 
defined by 

X~= X~ ([X), 8), {2) 

where E is some parameter, and 

{3) 

It is easy to show, following the methods of ref­
erences 3 to 5, that if Eq. {1) is covariant under the 
one-parameter family of transformations defined 
by Eqs. {2) and {3) then the following is true: 

{4) 

where we understand by :£ the untransformed 
:£{[xi], [qj], [Bqj/Bxi]) and the functions fk = 
fk { [xi], [ qj ], E) are determined, corresponding 
to the structure of :£ and of the transformation 
{2), by the equality 

1018 
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n 

= ~ ath ([x;], [qj], E) I axf<, 
h-l 

(5) 

where 

(6) 

with xi, qj given by the transformation (2). 
The existence of a system of functions fk which 

satisfy condition (5) is equivalent to the require­
ment of covariance of Eq. (1) under the transfor­
mation (2). In the special case when the function 
:£ and the transformation (2) are such that the 
equality :£* = :£ holds, it is possible to put all 
fk equal to zero. The function :£ is then a rela­
tive invariant under the transformation (2) - rela­
tive, because the expression for :£* contains as 
a factor the Jacobian of the transformation. 

We now specify that the field under discussion 
is a tensor field. Although the results to be estab­
lished are applied only to the Einstein gravitation 
equations (in the region outside of masses) to 
begin with we shall not use the explicit form of 
the Lagrangian :£ but will take :£ = :£ ( [ xa ] , 
[ gll- 11 ], [ agll- 11 /oxa]) where gll- 11 is the funda­
mental (metric) tensor.* Equations (1) become 

aY _ _ i!_ aY _ = 0. 
ag11-v axa. a (agiJ.V 1 axa.) 

(1') 

In these equations and in the following greek indices 
take on the values 0, 1, 2, 3 and repeated indices 
are to be summed over from 0 to 3. 

If Eq. (1') is covariant under a certain family of 
coordinate transformations defined by 

X~= X~ ([Xcx), E), 

(x~) •-o =X fl. 

then Eq. (4) becomes 

a {z(ax~\ a.F ag11-v(ax~\ 
ax ex (k J.•=O- a (agiJ.V I axCI.) ax[l -a;-) •=O 

. a!Z' (ag~v)' (afcx\ } 0 + a(agiJ.V;axCI.) if€ e-Q -\Te)e~Q = ' 

(2') 

(3') 

(4') 

The equality (4') can be substantially simplified 
due to the fact that the transformation of the de­
pendent variables is, as a consequence of their teit­
sor character, determined entirely by the transfor-

*The discussion is analogous for the case !Z' = !Z' ([xal. 
[A(v)], [aA<v>;axal) where A(v) = A11'·"" 11m is a tensor of 

(p.) (p.) (p.} fJ.l .... fJ.I 
rank (l + m), 

mation of the independent variables: 

(7) 

Consequently the derivatives of g/J_ 11 with respect 
to E can be eliminated from Eq. (4'). 

Since 

rag~v) = - giJ.fl -~· (~~·) - gv(> ~ \(~-~~) ' 
\ as e~o axv as e~o axv. as ·~o 

we conclude that if Eq. (1') is covariant under a 
certain one-parameter family of transformations 
defined by Eqs. (2') and (3') [and, of course, (7)] 
then the following relation holds 

a { (ax~) a!Z' agiJ.'' rax;, \ 
ax~ :£ -ar:· E•O- a(agiJ.VIaXCI.) ax[l \-af:-)<•0 

_ 2 a.F g fl .. .i!_ (ax~) _ (-a&:\ } .·.~ 0 
a (agiJ.V I ax,) 1' axv as ··~o az ) ·~o - , 

(8) 

where fa is determined from an equation analo­
gous to Eq. (5), corresponding to the structure of 
:£ and of the transformation (2'). 

Taking into account the identity 

a.F ay 
{f(agiJ.V I axCI.) = - gt'"g"" a (ag"~ I axCI.) 

it is possible to express the relation (8) in a differ­
ent form, which is more convenient for applications, 
if the unknown in the field equations is taken to be 
the contravariant fundamental tensor gll- 11 rather 
than the covariant tensor gll-11 • 

2. TENSOR FIELD WITH A LINEARLY-INVARIANT 
LAGRANGIAN 

Using Eq. (8) we now establish just what conse­
quences follow from the assumption that the La­
grangian :£ is a relative invariant* under arbi­
trary linear coordinate transformations. We shall 
refer to such an :£, for brevity, as linearly invari­
ant (omitting the word "relative"). 

In an n -dimensional space the most general 
linear coordinate transformation contains n ( n + 1 ) 
parameters. We are interested in the case of space­
time. which is four-dimensional and, consequently, 
the number of parameters is 20. 

It is easy to show that the most general linear 
transformation of the coordinates :xo. Xt. x2, x3 

can be expressed as a linear combination with con­
stant coefficients oi the following twenty simple 
(one-parameter) linear transformations: 

*I.e. !Z'• = !Z' where !Z'* is determined by an equation of the 
same type as Eq. (6). 
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I) Xo = X 0 + c: Xr = Xr Xz = X2 Xa = Xa, 

2) x0 = X 0 Xr C.C~ Xr -f- s x2 = x2 Xa = Xa, 

3) Xo = Xo x1 = x1 x2 = x2 +- E x3 = x3 , 

4) Xo = Xo Xr = Xr Xz = X2 Xa = Xa + 8, 

5) Xo = Xo X 1 = X 1 - 8X2 X 2 = 8X1 -f--- X 2 X 3 = X 3 , 

6) Xo = Xo X~ = X1 + sx3 X 2 = X2 X a = - 8Xr + X a. 

7) Xo = Xo Xr = Xr Xz = X2 -· 8X3 Xa = 8X2 + X3, 

8) Xo=X0 -EXr x~ = - sx0 + X1 X2 = X2 Xa = X3, 

9) Xo = X 0 - EX2 x 1 = X 1 X~=- sxo + X2 x3 = X 3 , 

10) Xo = X 0 -EX3 

11) X~=(l +s)x0 

12) X 0 = Xo 

13) Xo = Xo 

14) Xo = Xo 

15) Xo = Xo 

16) X0 = Xo 

17) Xo = Xo 

18) Xo = Xo- EX1 

19) X0 = X0 - EX2 

20) Xo = Xo -EX3 

Xr = Xr 

Xr = Xr 

X~= (I +E) X 1 

Xr = Xr 

Xr = Xr 

X~= Xr + C:Xz 

X~= Xr + 8Xz 

Xr = Xr 

~ = 8X0 + X 1 

We note that the transformations (9h to (9ho 
are special cases of infinitesimal Lorentz trans­
formations, whereas the remaining transformations 
(9) 11 to (9ho do not belong to the Lorentz transfor­
mations group. 

Let us now assume that the Lagrangian :£ is 
linearly invariant. It is then, in particular, a rela­
tive invariant under each of the twenty simple 
transformations (9). Using Eq. (8), we deduce 
from this fact the following consequences: 

From the relative invariance of :£ under the 
translation of the origin of time coordinate Xo 
[transformation (9h ] and of the space coordinates 
xb x2, x3 [transformations (9h to (9)4 ] it follows 
that Z is not an explicit function of XQ, x1, x2, 

x3, i.e., :£ = Z ( [ gJ..tV], [ 8gJ..!v/8x0d ). 
For a Lagrangian :£, which is not an explicit 

function of xa. we obtain, after some calculations, 
the following relations (lO)k corresponding to rela­
tive invariance under the transformations (9)k 
( k = 5, 6, ... , 20) respectively 

5) N~ = N~. 6) Nf = N~, 

7) N; = N;, 8) N~ = - N~. 

9) N~=- M. 10) N~= -Ng, 

II)NZ=Z, 12) N~=:£, 

13) N~ = :£, 14) N~ = :£, 

15) Ni =- N~, 16) N~ =- N~, 

17) N~ =-Ni, 18) N~ =' N~, 

19) N~ = N~, 20) Ng = J\it 

(10) 

x2 = x2 

x2 = x2 

x2 = x2 

x~ =(I ·+ s) x2 

x2 = x2 

X2 = EX1 + X 2 

x2 = x2 

x 2 = x 2 -1-- sx3 

x2 = x2 

x 2 = sx0 + x 2 

where 

x; = - sx0 + X 3 , 

Xa = Xa, 

Xa = Xa, 

Xa = Xa, 

x; =(I+ E)Xa, 

Xa = Xa· 

X3 = EX1 + X3,. 

x; = EX2 + Xa. 

Xa = Xa, 

Xa = Xa, 

x; = EX0 + x 3 • 

a" a co ag a co 
N~ - -"'~'-v "" + 2 asP __j___ 2 ~ ""' 

" - ax~ a (agl'" I axo) g!J.CX a- ' ax a (ag I ax) - .. ,~ g !J.~ ., 1'-0 v 

Collecting the relations (10) we conclude 

N~ = ZocxB· 

(9) 

Consequently, the Lagrangian :£ is linearly in­
variant if it is not an explicit function of the vari­
ables xa and if it satisfies the following system 
of equations: 

We next assume that Eq. (1') with a linearly in­
variant Lagrangian is, in addition, covariant under 
a certain family of nonlinear transformations de­
fined by Eqs. (2') and (3'). Again starting from the 
relation (8) we now obtain 

asP a• (ax~) 
~-~----:--gB ---a (ag!J.V I ax") . y ax"ax!J. ae ·~o 

1 a (·at") 
= -z- ax(/. (k" ·~o' (11) 

where the function fa is determined, as before, 
by an equation analogous to Eq. (5), corresponding 
to the structure of :£ and of the transformation 
(2'). 

It follows from Eq. (11) that the linearly invari­
ant Lagrangian under discussion will also be a rela­
tive invariant under this family of nonlinear trans­
formations if 
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(12) 

In the case of infinitesimal transformations 

x~ = Xr> + sa13 (x0 , x1 , x2 , x3) (~ = 0, 1, 2, 3), (13) 

Equation (12) becomes 

(14) 

where we have introduced the abbreviation 

(15) 

We note that relation (14) is not only a necessary 
but also a sufficient condition for the linearly in­
variant Lagrangian :£ to be a relative invariant 
under the infinitesimal transformation (13). 

Relation (14) will be taken as the sta.rting point 
in the discussion of the problem of coordinate con­
ditions in the Einstein theory of gravitation. 

3. RELATION BETWEEN COORDINATE CONDI­
TIONS AND INVARIANCE OF THE FIELD 
LAGRANGIAN 

As is well known, the Einstein gravitation equa­
tions, in a region outside of masses, may be ex­
pressed in the Lagrangian formalism (1') with the 
following Lagrangian: 

In these formulas g stands for the determinant 
formed from the components of the fundamental 
tensor gJJ.V and r ffv stands for the Christoffel 
symbol of the second kind. 

Let us show that the above Lagrangian :£ is 
linearly invariant. 

From the general transformation properties of 
the determinant g (see, e.g., reference 1) 

V-- D (x~, x~. x~, x~) ~--
-g, --1 -g 

D (x0 , x, Xz, Xa) - ' 

we conclude that the requirement :£* = :£, when 
applied to the present :£ [see Eq. (16)}, is equiva­
lent to the condition L' = L. Consequently the re­
quirement of relative invariance for :£ is equiva­
lent in this case to the requirement of ( absolute ) 
invariance of L in the usual sense. However, it 
follows directly from the known transformation 
properties of the Christoffel symbols that the 
equality L' = L holds for arbitrary linear trans­
formations of the coordinates. That is, the La­
grangian :£ under discussion is indeed linearly 
invariant. 

We now introduce Eq. (16) into Eq. (14). Since 
in the present case 

a (a/.CC: ax ) =]I-;; g {(2l'" g"'- g-!.1.'' g"') r~o 
tl-\11 0:. 

we can write Eq. (14) as 

!l 11"f" " (2 f-'r>I'" 11'r" ) - o GC!-[lg fLV ·-a"" g a(> - g "~ - • 

which with the help of a simple transformation be­
comes finally: 

(17) 

where, as usual, @l J.l.V = r-i: gJJ.V. 
Equation (17), which is a necessary and suffi­

cient condition for invariance of the function* L 
under the infinitesimal transformation (13), can 
also be obtained directly from the transformation 
properties of the function L. 

If linear coordinate transformations are consid­
ered, Eq. (17) becomes an identity. Thus it does 
not impose any additional conditions on the funda­
mental tensor gp.v as is to be expected from the 
linear invariance of the Lagrangian :£. If, how­
ever, nonlinear coordinate transformations are 
also considered besides linear ones and relative 
invariance of :£ under these transformations is 
demanded, then Eq. (17) gives additional conditions 
which the tensor gp.v must satisfy. Furthermore, 
the additional (coordinate) conditions resulting 
from Eq. (17) represent the necessary and suffi­
cient conditions for the field Lagrangian to be a 
relative invariant under the given family of non­
linear coordinate transformations. For brevity 
we shall refer to these families of transformations 
and to the resultant coordinate conditions as corre­
sponding to each other. 

Without stopping to consider the various conse­
quences of the invariance of the field Lagrangian 
under nonlinear coordinate transformations we 
pass now to the study of some of the problems re­
lated to coordinate conditions and corresponding 
families of transformations. 

4. COORDINATE CONDITIONS PREFERRED FOR 
A STATIONARY GRAVITATIONAL FIELD 

A gravitational field is called stationary in some 
(not small) region, if a coordinate system exists 
(the same one for the whole region) for which the 
components of the fundamental tensor gp.v are in­
dependent of the time coordinate x0• We shall call 

*When applied to the function :£, invariance in the usual 
sense is understood. 
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those coordinate conditions "preferred for a sta­
tionary gravitational field" (more accurately, pre­
ferred with respect to the stationary property of 
the gravitational field) whose use yields time in­
dependent solutions of the Einstein gravitational 
equations. 

In order to obtain such coordinate conditions 
starting from relation (17) we assume that the 
values of the components of the fundamental ten­
sor g!J.V are independent of the time coordinate 
Xo and that the field Lagrangian is a relative in­
variant under arbitrary transformations of the 
variable x0• In that case we can put in Eq. (13) 

where cp ( x0, x1, x2, x3 ) is an arbitrary (twice 
differentiable) function and 1/J/3 ( x0, x1, x2, x3 ) is 
an arbitrary linear function of the coordinates. 
Taking into account that in the present case [see 
Eq. (15)] 

we deduce from Eq. (17) the following as the nec­
essary and sufficient condition for the field La­
grangian to be a relative invariant under the indi­
cated family of transformations (with the condition 
agjJ.lJ/8xo = 0): 

where summation from 1 to 3 over the latin index 
k is understood. Owing to the arbitrary nature of 
the function cp ( x0, x11 x2, x3 ), this leads to the 
following four relations 

a®"-" I axh = 0. (IX= 0, I' 2, 3), (19) 

Relations (19) represent the coordinate conditions 
preferred for a stationary gravitational field. It 
also follows from the above that the coordinate 
conditions (19) and the family of infinitesimal co­
ordinate transformations, defined by Eqs. (13) and 
(18), correspond to each other when 8gJJ.v/8Xo = 0. 

The following conditions, which are a special 
case of the coordinate conditions (19), 

goi = o, iJ@tk liJxk = o (i = 1, 2, 3), 

were used by Fock1 to obtain spherically symmetric 
solutions of the Einstein gravitation equations in the 
static case. 

However one should keep in mind that conditions 
(19) do not exhaust the class of all possible coordi­
nate conditions preferred for a stationary gravita­
tional field. For instance, the coordinate conditions 

used by Schwarzchild6 in obtaining a spherically 
symmetric solution of Einstein's equations are pre­
ferred for a stationary gravitational field and do not 
coincide with conditions (19). 

We will say no more about the difference between 
the Schwarzchild and Fock solutions; this matte:r;: is 
discussed in the book by Fock.1 

The well known harmonic coordinate conditions 

iJ@"-f31iJX(3 = 0 (IX = 0, I' 2, 3), (20) 

widely used by Fock in his work on the astronomical 
problem of an isolated mass system also belong to 
the class of coordinate conditions preferred for a 
stationary gravitational field. 

The harmonic coordinate conditions (20) coin­
cide with the conditions (19) under the assumed in­
dependence of the components of the fundamental 
tensor gtJ.V on the time coordinate x0; if, how­
ever, ClgJJ.V /8x0 ~ 0 then the conditions (19) and 
(20) differ substantially. In this connection, it is 
of interest to find the family of coordinate trans­
formations corresponding to the conditions (20). 

5. HARMONIC COORDINATE CONDITIONS 

To find the family of coordinate transformations 
corresponding to harmonic coordinate conditions we 
put in Eq. (13) 

af3 (xo, xi> X2, Xs) 

= w (x0, x1, x2 , X3) x~ + ~f3 (x0, x1, X2, x3) 
(21) 

where w (X(), x1o x2, x3 ) is a certain (twice dif­
ferentiable) function and lfJf3 ( x0, x11 x2, x3 ) is 
an arbitrary linear function of the coordinates. In 
this case [see Eq. (15)] 

where we have used the abbreviations 

w!L = aw I axiL W!J.v = iJ2w I ax!LiJXv. 

Consequently, the following is a necessary and suf­
ficiertt condition [see Eq. (17)] for the field Lagrang­
ian to be a relative invariant under the family of in­
finitesimal coordinate transformations defined by 
Eqs. (1a) and (21): 

3w!LiJ(~ILS I axs + x,.ww,a®vs I axs - Xr,W!J.viJ®'-'V I iJxs = 0. 
(22) 

Now suppose that w ( x0, x1, x2, x3 ) in Eq. (21) 
is an arbitrary linear function, then w/J. are some 
arbitrary constants and wtJ.v = 0. Under these cir­
cumstances Eq. (22) provides us directly with the 
harmonic coordinate conditions of interest. 

The harmonic coordinate conditions thus repre-.. 
sent the necessary and sufficient conditions for the 
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field Lagrangian to be a relative invariant under 
the family of all transformations 

x;, = (1 + EW) X,G + Erflfj (~ = 0, 1, 2, 3), (23) 

where w and ljJf3 are some arbitrary linear func­
tions of the coordinates. 

If we take into account that the transformations 
(23) are the infinitesimal analogue of fractional lin­
ear coordinate transformations with the same de­
nominator/•7 we conclude that in coordinate sys­
tems defined by the harmonic coordinate conditions 
rectilinear and uniform motion in any one of them 
always corresponds to the same kind of motion in 
any other. This fundamental property of harmonic 
coordinate conditions, together with the fact they 
are preferred for a stationary gravitational field, 
explains the privileged character of the correspond­
ing coordinate systems in the astronomical problem 
of an isolated mass system. 1 

We note in conclusion that the harmonic coordi­
nate conditions can be written as follows with the 
help of the field Lagrangian: 

(24) 
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