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Within the framework of magnetohydrodynamics, under the assumption of ideal conductivity, 
a study has been made of oscillations of a cylindral cavity in a completely ionized plasma 
located in a magnetic field. It is shown that such a system is stable and that under certain 
conditions no waves can propagate along the cavity. 

THE stability of an ideal conducting gas in acyl
inder with respect to small perturbations has been 
studied by Kruskal and Schwarzschild1 and by Shaf
ranov.2 

In the present paper an analogous method will 
be applied to solve the problem of plasma oscilla
tions in an infinite cylindrical cavity of radius a, 
containing the conducting medium in a coaxial cy 1-
inder of radius a0, in which a current I0 is flow
ing. In the equilibrium state the pressure of the 
plasma on the cavity boundary is balanced by the 
magnetic pressure resulting from the surface cur
rents flowing at the plasma-vacuum interface. 

The starting point is the system of equations 
consisting of the magnetohydrodynamic equations 
for an ideal fluid conductor 

pdvjdt = [jxH]/c- Vp; 

apjat+Vpv=O, p=const·pY; (1) 

aH;at =curl [vx H]; curlH = = 4rr jjc (2) 

for the region within the plasma; the equations 

H = Vr.p, 11r.p = 0 (3) 

for the vacuum; and the boundary conditions at the 
interface, 

H{H} = -4rr{p}; n{H} =D. (4) 

Here H denotes the mean value of the field at the 
boundary, and the letters in brackets denote the 
magnitudes of the discontinuities in the correspond
ing quantities at the interface, and n is the unit 
vector normal to the plasma surface, directed into 
the plasma. Since this surface moves with the 
plasma, the relationship 

dnjdt = [n x [nxVu]], u = n v. (5) 

must be satisfied. 
In the equilibrium state v = 0, and the plasma 

is uniform in the z and cp directions, and the 
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non -zero components of the magnetic field are 
H~ and H~. It will be assumed that within the 
plasma H~= 0 and H~ is uniform, i.e., 

H~1 = 2/jcr, H~2 = 0, H~1 = const, H~2 = const, (6) 

where the indices 1 and 2 denote that the corre
sponding value of the quantity refers to the cavity 
and the plasma, respectively. Then according to 
Eq. (4) we must have 

(7) 

Solving the system (1) and (2) by the method of 
small oscillations, subject to the boundary condi
tions (4) and (5), we obtain the desired dispersion 
relation* 

.Q2 = f (.Q2 k) = -~ (k2- .Q2) [h. 2- ..!__ K~ (I;) IX (k)j (8) 
m , y' 2 1; I<m (/;) m 

under the conditions - 1r/2 < arg !; s 1r/2, where 

• 2 _ Po 2 _ (02 - k2) (02 - q2 k 2) 

VT - I Po. c - q' k'- (1 + q-) 0' • 

f I m (k) K~ (kx0) -I~ (kx,) Km (k) (m + kh 1) 2~ ( 9) 
1Xm (k) = ) 1 + , , ' , k J • 

l I m (k) Km (kx0 ) -I m (kx0) Km (k) 

Im and Km being the modified Bessel functions 
of order m. 

It follows from the self-adjoint nature of the 
operator which occurs in the linearized equation 
of motion that the expression (8) has no roots in 
the complex region. Hence in studying this expres
sion it is sufficient to limit ourselves to real values 
of n2• 

*Here we assume, as usual, that all quantities are pro
portional to exp i(kz + m¢ + wt). 
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First of all, we observe that, although as Q2 

varies from zero to - oo the function fm ( Q2, k) 
increases monotonically and 

2 2 [ 2 1 1\~ (k) J fm(O,k)=y;-k h2 -kKn,(k)IXm(k) >0, 

yet the dispersion equation has no solution for 
Q2 < 0. Thus Q is always real, and the system 
is stable with respect to small perturbations for 
which k ¢ 0. However, if k = o-, the dispersion 
equation has the solution Q2 = 0 for any arbitrary 
value of m when H~ = 0, but only for m = 0 
when H~ ¢ 0; i.e., in this case we have a state 
of neutral equilibrium. 

Let us now consider equation (8) in more detail 
for the case Q2 > 0. 

2 . 2 2 _ H02 /4 1. q < 1, 1.e., vT > vH- z2 1fPo· 
(a) m = 0. As the frequency varies from zero to 

q2k2 / ( 1 + q2), the function fm ( Q2, k) decreases, 
and for Q2 -q2k2/(1 + q2) it tends to the value 
q2k2/( 1 + q2); at the same time t tends toward 
infinity. With further increase in the frequency, 
fm becomes complex, and then when Q2 = q2k2 

it returns to the real domain again, varying from 
+ oo for Q2 = q2k2 to zero when Q2 = k2. In the 
region Q2 > k2 the function fm is always com
plex, i.e., there is no solution. There is therefore 
only a single branch, coinciding with the acoustic 
branch at small values of k and q2. 

(b) m ¢ 0. Just as in the case m = 0, the dis
persion equation has no roots Q2 < q2k2. For Q2 > 
q2k2 the function fm is positive, and varies from 
+ oo at Q2 = q2k2 to the value 

f (k2 k) = 2m IJ.m (k) 
m ' y' 1- q2 (10) 

at Q2 = k2, and then becomes complex. Conse
quently, solutions exist only for those cases where 

(11) 

i.e., the only waves which can propagate in the sys
tem are those with a wavelength greater than some 

critical wavelength A. (m) = 21r/k(m), where k(cmr) 
cr cr 

is the smallest root of the equation k2 = fm ( k2, k). 
In both of the above cases the frequency Q2 lies 

in the interval from q2k2 to k2. 
2. q2 > 1. In this case fm is positive only when 

Q2 < q2k2/(1 + q2). For values of Q2 greater than 
q2k2/(1 + q2) the function fm is either complex 
or negative; that is, the dispersion equation has 
no solutions at all. 

Thus we have seen that the dispersion equation 
(8) has no solutions corresponding to acoustic or 
Alfven waves in a gas. There is only a single mode 
that vanishes as q - 1. For q2 > 1 no solutions 
are possible at all; i.e., no wave-like motion is 
possible. 
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