
654 LETTERS TO THE EDITOR 

As an illustration we shall consider the case of 
a constant field (Aa = 0, a= 1, 2, 3) in the approx
imation r i ( q', q" ) = 1. We shall assume (compare 
reference 8; the equation has a meaning also for the 
determination of the Green function as an ensemble 
average) 

1 { np 1- np } 
Go(P) = -(2rc)4 p -w -iy' - - +. " 

o p p Po "'p LY p 

(w,:·r', 1"- real; 1', 1" > 0). (5) 

We must note that Eq. (5) is by no means general 
(in particular, this assumption means that we re,
strict ourselves to one -perhaps spin-degenerate
band). A number of interesting cases, however, 
are included here. One can easily evaluate .6-G(x, y) 
under the given conditions. Taking (1) into account 
we get for the change in the occupation numbers in 
momentum space: 

(a) if y' = y" = TJ - 0: 

t:J.n = _5__ i!nP. 
P s + ik0 i!p~ ' 

(6) 

(b) if y', y" are finite and k0 = 0 (the calcu
lation is also simple for k0 ~ 0, but leads to a 
more unwieldy result): 

(7) 

Here E is the field strength (with potential cp ) , 
'Yp = 'Yp + 'Yp. The right hand side of (6) agrees, 
as was to be expected, exactly with the "acceler
ating" term of the transport equation, if we under
stand by s - 1 the time of action of the field. The 
static electrical conductivity tensor has from (7) 
the form (in the usual units, m is the true elec
tron mass) 

(8) 

In the particular case of Boltzmann statistics and 
and isotropic model (np"' exp ( -nwp/kT), wp = 

w (I PI), 'Yp = 'Y (I pI)) Eq. (7) agrees formally 
with the result of applying the transport equation, 
if we take for the "relaxation time" the quantity 

1 [ a In Yp] 
-rp=- 1 +kT~. 

yl' "'p 
(9) 

We emphasize, however, that Eq. (8) is valid over 
a far wider range than the transport equation. 
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IF a ferromagnet is in an alternating magnetic 
field, its macroscopic state changes; this means 
that the specimen is absorbing energy from the 
field (ferromagnetic absorption). The basic 
causes of ferromagnetic absorption are, as is 
known, the following: the nonvanishing time for 
establishment of equilibrium within the spin sys
tem ( intraspin relaxation), and the nonvanishing 
time for establishment of equilibrium between the 
spin system and the lattice (spin-lattice relaxa
tion). In this article it is shown that for an iso
tropic ferromagnetic medium near the Curie tem
perature, it is possible to determine the law of 
ferromagnetic resonance if the specific form of 
the thermodynamic potential is known. 

A nonequilibrium state of the system can be 
described by a thermodynamic potential that de
pends on nonequilibrium thermodynamic param
eters. We suppose that a ferromagnet without 
hysteresis is in an external magnetic field, and 
that the amplitudes of the constant and alternating 
fields are pointed in mutually perpendicular planes 
(the case of perpendicular fields). In the second 
case H0 and h are pointed along the z axis 
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(the case of parallel fields). The nonequilibrium 
thermodynamic potential in the stated problem has 
the form 

ct> = cf>0 + ocM2 + 1/ 2 ~ M 4 - MH', (1) 

where <I> 0, a, and f3 are functions of temperature 
and pressure, M is the magnetization, and H' is 
the effective magnetic field. 1 In the case of weak 
fields the magnetization M coincides with the 
spontaneous magnetization Ms. 

A nonequilibrium state of the system may be 
described1- 3 by nonequilibrium thermodynamic 
parameters, which are given by the relations 

m = M- M0 = m 0 eiwt, -& = T- T0 • (2) 

Here the quantities with index 0 correspond to an 
equilibrium state of the system; T is the temper
ature of the spin system, T0 is the temperature 
of the lattice, w is the frequency of the alternat
ing field. The equation of motion for the alternat
ing part of the magnetization is expressed by the 
formula 

m =- rp (H', T) vet>+ g [H' ·M], (3) 

where cp ( H', T) is some function, which remains 
undetermined within the framework of thermody
namic theory; g is the gyromagnetic ratio. On 
limiting ourselves to terms linear in h and m, 
we shall have for the perpendicular field 

"tfilx + Axmx - "tWoxmy = xrhx. 

"tlily + Aymy + "tWoymx = Xt W 0xhx, 

"t!ilz + Azlnz + (xrH'jT)-& = 0, 

= g {Ho + (Nx- N y) M 0 }'f, {Ho + (Ny- Nz) M 0 }'1•, 

A(x,y,z) = 1 + oc-1 [~M; + N(x,y,z)), (4) 

where T = Xf / cp is the spin-spin relaxation time 
for h perpendicular to H0, Xf is the magnetic 
susceptibility, which depends on a (reference 4), 
w0 is the resonance frequency, and N is a demag
netizing factor. 

For complete solution of the problem it is nec
essary to introduce another equilibrium equation in 
m and 8; it will correspond to spin-lattice inter
action. According to the first law of thermodynam
ics, with (1) and (2) taken into account, we find: 

(A'T/x.rH')'fr;'tn--(I-o),'ii---&=0, (5) 

where r' = a 1T2/ (a + CH') is the spin-lattice relax
ation time, A'= 1 + 3{3M~/a, o = CH'2/(a + CH'2 ), 

and a 1, a, and C are constant coefficients. 
For parallel fields the last equation in (4) gives. 

where A" = 1 + kM~, and where K is a constant. 
On eliminating 8 from (5) and (6), we get an equa
tion relating to the magnetization m, namely 

(I - o) m + (r/-r. + 1/"t' )~ + A'm I ("t'"t) 
= [(1- o)li + h/,'1 xri.... (7) 

where T represents the "transverse" relaxation 
time and r' the "longitudinal" relaxation time ac
cording to Bloch, and y =A'[ 1- o (A"- 1 )]. 

If we bear in mind that m and h are the peri
odic functions (2), solution of equation (4) in the 
case of perpendicular fields gives 

~ [AxAy + 't2 (w~- w2)] (Ay + 't2cu2) + 't2cu2 (Ax+ A1) 

Xt (AxAy + (w~- cu2) 't 2]2 +(Ax+ Ay)2 't2 w• 

-r:_ {(Ay + 't2 cu~ (Ax+ Ay)]- [AxAq + 't2 (cu~- cu2}]} 'tcu 

Xf [AxAy+(w~-w2)'t"2J2+(Ax+Ay)2't"2w2 

In the case of parallel fields, we find from (7): 

x' = {(-r + y-r')- (1- ~)[A'- n' (1- ~) cu2] -r'}cu 
Xf [A'- (1- 8) n' cu2J2 + (-r + y-r')2 w" 

{'t+ [y-(1-~) A'J-r'} w + (1-8)'n'2w8 
(A'_ (1- ~) n'cu2J2 + (-r + y-r')•w• 

(8) 

(9) 

The mean absorption energy of the spin system 
per unit time, by virtue of (2) and (8), has the form: 

S = ~ h2 {(Ay + 't2 cu) (Ax+ Ay)- (AxAy + -r2 (w:- w•)]}-rcu• 

2 Xf 0 fAxAy + (w:- cu2) -r2J"+ (Ax+ Ay)2-r2cu2 

Above the Curie point, Ms = 0, A= A'= A"= y = 1, 
and w0 = gH0; i.e., results are obtained that agree 
with the results of references 2 and 5. 

1 N. Bloembergen, Phys. Rev. 78, 572 (1950). 
2 I. G. Shaposhnikov, J. E~ptl. Theoret. Phys. 

(U.S.S.R.) 18, 533 (1948). 
3 G. R. Khutsishvili, J. Exptl. Theoret. Phys. 

(U.S.S.R.) 29, 329 (1955), Soviet Phys. JETP 2, 
187 (1956). 

4 V. L. Ginzburg, J. Exptl. Theoret. Phys. 
(U.S.S.R.) 17, 833 (1947). 

5 G. V. Skrotskil' and L. V. Kurbatov, Izv. Akad. 
Nauk SSSR, Ser. Fiz., 21, 833 (1957) [Columbia 
Tech. Transl. p. 833]. 

Translated by W. F. Brown, Jr. 
169 


