THE GAMMA RAYS OF As⁷⁴

Yu. E. LOGINOV and K. I. YAKOVLEV

Radium Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor November 21, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 940 (March, 1959)

We have studied the γ -ray spectrum of As⁷⁴ by means of a single-channel scintillation γ -ray spectrometer, using a NaI(Ta) crystal with a type FEU-S photomultiplier. The efficiency curve of the γ -ray spectrometer was obtained by taking measurements with it on standards giving known numbers of disintegrations.

The energies and relative intensities of the lines observed in the γ -ray spectrum are given below,

Gamma-ray spectrum of As⁷⁴, taken with a scintillation γ -ray spectrometer. The dashed curves show the resolution of a section of the spectrum into components.

together with the results of the latest two papers on this spectrum:

Present work		Grigor'ev et al. ¹		Horen and Wells ²
hν, kev	Relative intensity	hν, kev	Relative intensity	hν, kev
610 ± 30		635	1	_
960 ± 50 1200 ± 30	0.015 ± 0.008 0.023 ± 0.008	1190	$0.018\pm0,005$	1190 <u>+</u> 10
2230 <u>+</u> 70	~10-4	>1190	<0.004	1600 ± 40 2220\pm20

The work of Grigor'ev et al.¹ was done earlier than ours; we received the brief communication of Horen and Wells after the completion of our measurements.

The existence of γ -ray lines of energies of 1190 and 2220 kev can evidently be regarded as established; the other two lines, at 960 and 1600 kev, still need further investigation.

¹Grigor'ev, Dzhelepov, Zolotavin, Mishin, Prikhodtseva, Khol'nov, and Shchukin, Izv. AN SSSR, Ser. Fiz. 22, 831 (1958), Columbia Tech. Transl. in press.

²D. J. Horen and D. O. Wells, Bull. Am. Phys. Soc., Ser. II, **3**, 315 (1958). Translated by W. H. Furry

177

ULTRASONIC ATTENUATION IN METALS

G. L. KOTKIN

Moscow State University

Submitted to JETP editor November 22, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 941-942 (March, 1959)

¹HE attenuation of ultrasonic waves in metals at low temperatures is determined by the electronphonon interaction. The absorption coefficient, γ , has been calculated by Pippard,¹ and Steinberg² has examined the corresponding change in the velocity of sound. Bömmel³ measured the attenuation in the presence of an external magnetic field and found that γ did not vary monotonically with H. This effect was explained by Pippard⁴ as a type of cyclotron resonance. Steinberg⁵ carried out the calculation for transverse waves in a longitudinal magnetic field and concluded that resonance absorption does not occur in this case. Here we examine the attenuation of transverse waves in metals in a transverse magnetic field.

We regard the motion of the atoms of the lattice as given and consider the electrons to be free. We are interested in the case when $l \ge \lambda$, $R \sim \lambda$. Here λ is the wavelength of the sound waves and l is their mean free path. R = mvc/eH, is the

664