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The static dispersion relations and Chew-Low equations are established for the process 
1T + N- n7T + N. It turns out that for this process one can obtain physically different dis­
persion relations and Chew-Low equations, depending on how the variables are chosen. 

THE progress in theoretical 1r -meson physics of 
the last few years has been achieved mainly by 
means of the theory of dispersion relations and 
by means of the so-called Chew-Low equations. 
There exists a connection between these two the­
ories. This has already been investigated by sev­
eral authors. 1•2 In the present paper we will es­
tablish the dispersion relations and the Chew-Low 
equations for the process 1r + N - n7T + N in the 
fixed -source approximation. 

As in the case of elastic scattering one has to 
utilize the causality conditions in order to estab­
lish the dispersion relations. Utilizing the Bogo­
lyubov formalism 3 it is possible to introduce the 
causality conditions in an explicit manner in the 
static case4 to which we shall restrict ourselves. 
This is as is well known not possible in the for­
malism of Wick, Chew, and Low. 5 

In setting up the dispersion relations we employ 
the retarded and advanced transition amplitudes 
of the considered process. Since there does not 
hold an "optical theorem" for the case n > 1 and 
because of the appearance of the unphysical region 
it seems that it is not possible to apply the disper­
sion relations in an exact fashion. Therefore we 
shall go over from the static dispersion equations 
to the appropriate equation of the Chew-Low type. 

Depending on the way how one fixes the vari­
ables in the case n > 1, one can obtain different 
dispersion relations. Presumably the exact solu­
tions to these different dispersion relations will 
coincide. 

On the other hand it turns out that the results 
obtained by using approximations definitely depend 
on the choice of variables. This is also true for 
the different Chew-Low type equations which cor­
respond to the different dispersion relations. It 
should be mentioned that these differences are 
due to physical reasons and are not connected in 

any way with the frequently discussed nonunique­
ness of the solutions to the Chew- Low equations 
(see references 6 and 7). We shall not consider 
this point in the present paper. 

1. STRUCTURE OF THE S MATRIX 

An element of the S matrix of the process 
1r + N- n1r + N can be written in the form 

(1) 

where q0 is the momentum of the incoming 1r 
mesons and qn ... q1 . . . are the momenta of the 
outgoing mesons; each of the momenta ~ is un­
derstood to form a scalar product with the corre­
sponding oS/ ocp; Vi = v <I ~ I) is the Fourier 
transform of the smeared out fixed nucleon, and 
CfJi ( ti ) can be written in the form 
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- i j' dqi { (+) iE.t. (-) -iE.Ii} 
= --,1 , 1 -- qyvi aP. (qi) e "- ap (qi) e ' (2) 

(2rc) 2 r 2Ei ' ' ' 

and is essentially the field operator of the i-th 1r 
meson. 

Owing to the assumption of a fixed and smeared 
out nucleon, (2) depends only on the time variable. 

Between the 1r meson creation and annihilation 
operators and the operator S there hold the follow-
ing commutation relations: 

a<-> S = - -- _Y_ e-i.r:t --- dt i vq s as 
[ p (q), l (2rc)'(, V2E a'Pyp(l) ' 

[S a<+l(q)] = + -- r e+iEt --dt. i vq. Jo as 
' P (2rc )'12 y 2£ a'?yp(l) 

(3) 
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The pseudoscalar nature of the 7f mesons 
leads to the well known factors in (1) and (3). They 
are of no particular importance for our purposes. 

In order to bring the matrix element of the 
considered process to the form (1) one has to 
utilize the stationary character of 

s I rx > = I rx >. (4) 

where I a> is either the vacuum or a one-particle 
state. This way one can immediately express the 
S matrix element in terms of the retarded transi­
tion amplitude. For this purpose we utilize the 
translational invariance of the expression and 
write Sn,t in the following form: 

S11 , 1 = ~2TCio(En + ... + E1 ~E0) 

Vn • • • Vo ret .., 
X ('n+I )'!, Tn.dEn,····E,;Eo), 

:!. En ... Eo 

T~~~, (En, ... E,; Eo)= 

(5) 

Starting with the Hermitian conjugate of the ma­
trix element Sn,t we find for the advanced transi­
tion amplitude 

X <s' s). I -i3n [(8S+;8cp0 (O))S] I 
8qJn (t nl · · · 8rp, (t,) 

The causality conditions can be expressed in 
our static case in the following two ways: 

o (_E._ s+) 1 oq/ (t') = o for t' < o. 
8cp (0) 

fort' >O. 

From this it follows that 

T~~11 = 0 for t 1 < 0, l = 1, ... n; 

(6) 

(7) 

T~~1 = 0 for tz > 0, l = 1, ... , n, (8) 

which is the justification for the terms "advanced" 
and "retarded." 

The conditions (8) will allow to establish dis­
persion relations. 

2. DISPERSION RELATIONS 

We consider the expressions (5) and (6) to be 
functions of n complex variables E l = az + ib z 

( l = 1 ... n ) . One sees from the causality condi­
tions (7) that Tfi.~1t (En, ... E1; E) is an analytic 
function of Ez for Im Ez > 0 while T~v1 (En, ... 

' ... E1; E) is analytic for' Im Ez < 0. 
In order to establish the behavior of the func­

tions Tfi.e1t and T~v1 for real values of the ar-
' ' guments we consider the difference of these func-

tions which is proportional to the antihermitian 
part of the transition amplitude, An 1• For this 
we exchange (os+/ocp 0 )S in Tzf,i by -s+(oS/ocp 0 ) 

and perform explicitly the functional derivative. 
Then we obtain the following expression (here Ez 
are real) 

(9) 

Here 6 is a symmetrization operator defined 
by the following relations: 

6f(n; n~ 1, ... , 1) 

= f (n; n ~ 1, ... , 1) + f (n ~ 1; n, n ~ 2, ... , 1) + ... ; 
6f(n, n~ 1; n~2, ... , 1) 

= f (n, n- 1; n ~ 2, ... , 1) 

+ f (n, n ~ 2; n- 1, n ~ 3, ... , 1) + ... 
... + f (n, 1; n- 2, ... , 2, n ~ 1) 

+ f (n- 1, n- 2; n, n ~ 3, ... , I) + ... 
... + f (n- 1, 1; n, n ~ 3, ... , 2, n- 2) 

+ ... + f (2, 1; n, ... , 3). 

In an analogous fashion one can write down at 
once expressions for 6f (n, ... , k; k -1, ... , 1 ). 

Utilizing the translational invariance of the 
matrix elements one can write (9) as a sum of 
terms of the following form (we take as an ex­
ample the fourth term of (9)) 

21ti ~6o (En+ En-1 + E;) 
i 

where 
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I illn-1S I 
X <s' 8 8 s, i). 

'i'o · · • 'Pn-2 

We now introduce new variables for the Ez 
E, = v,E, l = 1, ... , rz, Eo= E; 

n 

h v1 = 1, v1 = const (real) 
1~1 

(10) 

(on the nonuniqueness of this choice of variables 
and its consequences see Sec. 4). Then T~?1t 
and T~V1 are analytic functions in the upper and 
lower h~f of the complex E -plane respectively. 

If we now consider only strong interactions in 
our process then the energy Ei can assume only 
the values Ei = 0 and Ei 2:::: fJ. where fJ. is the 
mass of the 1r meson. As a consequence of this 
the difference Tret - Tav has at E = 0 a o -n,1 n,1 
function singularity and equals zero for 0 < I E I 
< fJ.. One can thus make the following statement: 
T~?1t ( E, v ) and T~;1 ( E, v ) define in the com­
plex E plane a single analytic function which has 
branch cuts only on the rea.l axis and has there 
one o -function singularity (see Fig. 1). 

~~"(E,v) 1' 
0 
0 

FIG. 1 

>-------E 

One can apply the Cauchy theorem to this func­
tion thus obtaining dispersion relations. Assum­
ing that An 1 ( E, v ) decreases for E - oo like 
1/E or faster these have the form 

+oo 
D . 1 ·~ An. 1(e, v) 

n,1(En, ... ,Er,E)=-P E ds. 
7t e- (11) 

-co 

For negative energies the integral can be obtained 
from the relations 

Tn,1 (-En, ... , - Er;- E)= Ps's Tt,, (E; E~o ... , En) 

= Ps· sT~. 1 (En •... , Er; E). 

where Ps's -operator exchanging initial and 
final spin and isospin of the nucleon. 

Finally, writing explicitly the one-nucleon term 
we obtain for the process 1r + N- n1r + N the dis­
persion relation 

The summation is over the spin and isospin indices 
of the nucleon in the intermediate state. 

The physical region of the integration (11) be­
gins at the point E1r = JJ.IV where v = min ( v1 , .•. , 

vn). Therefore the inequality E7r 2:::: nf.J. always 
holds, the equal sign applying when the outgoing 
mesons all have equal energy. One sees from this 
that except in the case of elastic scattering ( n = 1 ) 
there always exists a large unobservable region in 
the dispersion integral. It therefore is appropriate 
to bo over from the dispersion relation to the cor­
responding equation of the Chew-Low type. 

3. EQUATIONS OF THE CHEW-LOW TYPE 

If one knows the dispersion relation for any 
process in the fixed nucleon approximation one 
can immediately obtain the Chew Low type equa­
tion for this process. 

To this end we insert into the dispersion rela­
tion the explicit expression for the antihermitian 
part of the transition amplitude. The expression 
thus obtained can be easily integrated because of 
the o -function. In our case we shall this way ob­
tain an explicit expression for Dn,t ( E , ... , Et; E ) . 
utilizing 

Tn,1 = Dn,1 + iAn,1 H ±1 ·~ = P _!_ + irro (x) 
X lu X 

one can immediately write down the following re­
lation: 

Tn,1 (En,···, E1; E) 

= - h 6 { ( Tt, (en; E,) T,, n (£,;- en-1' ... '- e,, e) )•n=Et 
, E,-En-i8 

+ . ( Tn, i (- e, <r, · · · • 'n-1; E) Tt 1 (E,; -en) )•n=-Et 
£ 1 + En+ 18 

( T;J: i (en, •n-I; E;) Ti, n-1 (£,; - en-2• · · · ' - el, e), n+ •n-r=Ei 
+ E.-E -E -i8 

L n n-1 

+ ( T n-1, i (- e, Er, .•• ' •n-2; E) rt 2 (£,;- •n-1' _e n)•n+•n-1=-Et 

E1 +En+ En-!+ i8 

( T;L (en, ... 'e,; E,) Ti,l (E,; e),=Et 
+· .. + £.-E-i8 

l 

(T1, i (-e; E)T/:n (E,;- e,, ... ,- •nl).~-Ei} 
+ E, + E + i8 . (13) 
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In view of the equality 

one can replace on the right hand side Ti'n,k (Em; 
Ek) ~ Ti'n,k (Em; Ek) (this not identical with her­
mitian conjugation ) . 

Equations (12) and (13) are symmetrical with 
respect to the outgoing mesons and, furthermore, 
have the required crossing symmetry. The terms 
of (13) correspond to the diagrams shown in Fig. 2 
(for the case n = 3 ). 

FIG. 2 

4. THE PROCESS 71' + N- 271' + N 

We now shall show by means of the example 
71' + N - 271' + N what are the consequences of the 
choice (10) of the variables. 

For this purpose we compare the results of the 
present paper with those of Zoellner et al. 4 where 
the choice had been made 

El=(E+!J.)/2, £2=(£-b.)/2. (14) 

In both cases we have two variables of which one 
has to be kept constant in order to establish dis­
persion r.elations. This can be done in several 
ways (particularly in the case of n71' mesons). 
In reference 4 the differnce E1 - E2 = .6. was kept 
constant while in the present paper this was done 
with their ratio E1 /E2 = vd v2• 

This possibility of choosing different variables 
has both a mathematical and a physical meaning. 
It was shown in reference 4 that the choice (14) 
for the variables leads to limiting conditions for 
the existence of the dispersion relation or of the 
Chew-Low equation since the region on the real 
axis where Tret = Tav exists only for 1.6.! < 2 J-1.. 

However, as can be seen from the present work, 
there do not exist such limiting conditions for the 
vz if the choice (10) has been made (even in the 
case of arbitrary n ) . 

In fixing the variables one has to make sure 
that the analyticity of the amplitude is guaranteed 
and that the symmetry of the system is not dis­
turbed. For example, if one chooses the variables 
in the form E2 = const = c and E1 = E- c, then 
one finds that part of the spectrum of the ampli­
tude A does not depend on E due to the presence 

of terms of the type "'~ o ( Ei ± E2 )( Ei ~ J-1. ). It 
. 1 
1s thus impossible, within the framework of the 
present model, to establish exact relations for D 
(dispersion relations) or for T (Chew-Low type 
equations ) . 

This way one can obtain for the process 71' + N 
- n71' + N (with n ~ 2) in the fixed nucleon case 
different dispersion relations and Chew-Low type 
equations which differ from each other by the dif­
ferent ways of choosing the ( n - 1 ) appearing 
parameters.* 

One can suppose that the final results of an 
exact evaluation of the different dispersion rela­
tions (which, obviously, for n > 1 is practically 
impossible to achieve) will be identical. How­
ever, this cannot be assumed for the approximate 
expressions following from the respective disper­
sion relations or Chew-Low type equations. So, 
for example, the one-nucleon terms in reference 4 
have the formt T1, 1 (.6.) while here they are 
T1,1(0). 

The common characteristic of all these vari­
ants of the dispersion relations and Chew-Low 
equations is that in all expressions the energy 
is conserved. This is due to the circumstance 
that always the hermitian part of the transition 
amplitude is expressed as a dispersion integral 
over the antihermitian part. 

In references 9-11, Chew-Low equations have 
been obtained for the process 71' + N- 271' + N 
where the utilized quantities did not lie on the 
energy shell. The authors, for example, assumed 
that the argument of the amplitude of the elastic 
process (the one-nucleon term) lies in the ob­
servable energy region. In the here considered 
case where energy conservation is always re­
quired the argument of the one-nucleon term lies 
in the unobservable region of the process and has 
to be calculated by means of the dispersion rela­
tions for the case ·of elastic scattering. The re­
sults of the corresponding computations will be 
published in a subsequent paper. 

The author expresses his thanks to A. A. Lo­
gunov for numerous discussions and suggestions. 
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