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The fate of an unstable magnetohydrodynamic shock wave is considered; it is shown that 
such a wave must necessarily disintegrate into several waves among which there are fast 
and slow magnetoacoustic shock and similarity waves, Alfven discontinuities and a contact 
discontinuity. It is significant that disintegration of the unstable shock wave is accompa­
nied by an increase in the entropy. The disintegration of a stable shock wave is impossible. 

1. INTRODUCTION 

ALTHOUGH the conditions for the stability of 
shock waves in ordinary and magnetohydrodynam­
ics1-3 are well known, it has not been explained 
what happens with an unstable magnetohydrody­
namic shock wave if it is created in some fashion. 
This question is considered in the present paper 
in an example of a plane stationary shock wave in 
an ideal gas, on both sides of which the magnetic 
field makes a small angle with the normal to the 
plane of the discontinuity. 

In Sec. 1, the qualitative picture of the disinte­
gration is investigated. In Sec. 2, the problem of 
the disintegration is solved in zeroth approxima­
tion, with neglect of the small tangential magnetic 
field. In this case, the initial unstable shock wave 
disintegrates into two dis continuities. However, 
the approximate distance here between the dis con­
tinuities that are formed does not increase with 
time. Therefore, in making clear the possibility 
of such a disintegration, it is necessary to con­
sider the following approximation. Consideration 
of the tangential magnetic field in first approxima­
tion is given in Sec. 3. In this approximation the 
initial shock wave disintegrates into four discon­
tinuities. In Sec. 4, it is shown that in the consid­
eration of a tangential magnetic field, the distances 
between the discontinuities which are formed con­
tinues to grow. 

We note that, in order that the disintegration 
can actually take place, it is necessary not only 
that the distances between the discontinuities in­
crease with time, but also that the discontinuities 
be stable. As follows from reference 2, satisfac­
tion of the second condition automatically follows 
from the satisfaction of the first condition. More­
over, the process of disintegration must be accom-

panied by an increase in entropy. Satisfaction of 
this condition is also shown in Sec. 4. 

We shall show that the value of the normal mag­
netic field Hx is such that on both sides of the 
discontinuity the Alfven velocity V x is greater 
than the sound velocity c and the instability con­
ditions are satisfied:2•3 

(1) 

where v x is the velocity of the liquid relative to 
the front of the discontinuity; the index 1 refers 
to the region in front of the wave, the index 2 to 
that behind it. (The x -axis is directed perpen­
dicularly to the plane of the discontinuity from 
the region 1 into region 2, the magnetic field lies 
in the xy plane, the plane of the discontinuity is 
at rest relative to the chosen system of coordi­
nates, and the liquid moves parallel to the x axis 
in the positive direction.) 

Such an unstable magnetohydrodynamic shock 
wave can be obtained if an ordinary stable hydro­
dynamic shocrtc wave for which 

(1 ') 

is placed in a magnetic field (naturally, the liquid 
is assumed to be ideally conducting). 

If such a wave disintegrates, then, in addition 
to the contact discontinuity, only plane shock and 
self-simulating waves* are formed. This results 
from the fact that a characteristic length is absent 
from the problem. The conditions for instability 
of the discontinuities that are formed superim­
posed restrictions on the possible picture of the 
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*Self-simulating in the narrow sense of this word applies 
to waves for which all the magnetohydrodynamic quantities 
depend upon the ratio x/t. 
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disintegration. As is well-lmown,2 there exist 
three types of stable discontinuities: fast and slow 
magnetoacoustic shock waves, rotational ( Alfven ) 
discontinuities and three types of simple waves:5 

fast and slow magnetoacoustic, and rotational 
( magnetohydrodynamic ) . 

The self-simulating waves are a special case 
of the simple waves. However, the rotational 
simple waves cannot be self-simulating, since 
the velocity in front of the front of a simple rota­
tional wave is equal to the velocity of the back of 
the front; therefore, there exist only two types of 
self-simulating waves: fast and slow magnetoacous­
tic waves. 

The velocity of all the enumerated waves are 
such that on each side there is propagated not more 
than three waves: in front, the fast magnetoacous­
tic (shock or self-simulating); behind, rotational 
discontinuity and, finally, the slow magnetoacoustic 
wave (shock or self-simulating). Waves travel­
ing to the left are separated by the contact discon­
tinuity from waves traveling to the right. 

The amplitudes of these 7 waves should be de­
termined such that the sum of the jumps of each of 
the seven magnetohydrodynamical quantities ( p, 
p, Vx, vy, Vz, Hy, Hz) on these waves is equal to 
the initial jump: 

7 

2] 6.;p = P2- pi; ~ 6.;V;c = V2x- V1x (2) 
i=l i=l 

and so forth. 
For simplification of the calculation, we shall 

assume that the initial magnetic field makes a 
small angle with the normal to the surface of dis­
continuity, i.e., that the tangential magnetic fields 
H1y and H2y are very small. Without limitation 
of generality, it can be assumed that v1z = v2Z = 0, 
and the quantities v1y and v2y are small. 

We note that even after the disintegration the 
component of the magnetic field Hz is identically 
equal to zero. 

2. ZEROTH APPROXIMATION 

We shall solve the problem of the disintegration 
by the method of successive approximations, neg­
lecting in zeroth approximation the quantities H1y. 
H2y, v1y. v2y. and in the first approximation, the 
squares of these quantities. 

In the determination of the type of waves being 
formed, it must be kept in mind that if a tangential 
magnetic ff:eld is absent in front of the fast mag­
netoacoustic wave, then the wave cannot be self­
simulating. Actually, for each plane magnetoacous­
tic wave, the following relation is satisfied: 4•5 

dH u I dp = u;H u I p (u;- V~), (3) 

where 

u;, = 112 [V2 + c2 + VW2 + c2 )2 - 4c2V~ ], V = H IV 4rrp, 

u+ corresponds to the fast, and u_ to the slow 
acoustic wave. 

Multiplying the relation (3) by Hy and noting 
that u: < Vi < u~, we find that dH} I dp > 0 for 
the fast magnetoacoustic wave, and dH}/dp< 0 
for the slow magnetqacoustic wave. On the other 
hand, it is lmown5- 7 that the density decreases in 
self-simulating magnetoacoustic waves. From 
this it follows that in the fast magnetoacoustic 
wave, the magnetic field decreases, while in the 
slow, it increases. It is easy to show that the 
opposite conditions are satisfied in shock waves. 
Therefore, on the forward front of the fast mag­
netoacoustic self-simulating wave, the tangential 
magnetic field cannot be equal to zero. 

From this it follows that the fast magnetoacous­
tic waves formed as a result of the disintegration 
are shock waves, if only they are not equal to zero 
in zeroth approximation. 

It is easy to prove that the conditions (2) in 
zeroth approximation correspond to a disintegra­
tion into two shock waves traveling to the left,* 
while the magnetohydrodynamical quantities in 
the region included between these waves are 
equal to 

'1/ = ± 1. (4) 
If the velocity v1x differs slightly from the 

velocity V1x and v2x < u2_ = c2, then such a dis­
integration is possible only for V1x > VlX• i.e., 
only when the stability conditions2•3 of the initial 
shock wave are not satisfied. It follows from this 
that for v1x < V1x the expressions for Hy and vy 
become imaginary. 

The conditions (2) will also be satisfied when 
there is an Alfven discontinuity between the shock 
waves that are formed, making an angle 7T with 
the tangential magnetic field. 

*This circumstance was noted by S. I. Syrovatskii in a lec­
ture at the Conference on Applied Theoretical Problems of 
Magnetohydrodynamics. 8 
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It can also be shown that there can be no other 
disintegrations of the initial wave which satisfy 
the equations (2) in zeroth approximation, if the 
quantity a= ..J (v1x- V1x)/Vtx is sufficiently 
small and the amplitudes of all the waves are 
small except the slow magnetoacoustic wave 
traveling to the left. 

We note that these waves are compressional 
waves, i.e., they satisfy the well-known condition 
of thermodynamic stability. 9- 11 

The two waves found in the zeroth approxima­
tion lie at the boundary of the region of stability 
and have a velocity equal to zero. Therefore one 
cannot yet see at this stage of the calculation that 
the waves formed as a result of the disintegration 
of the initial wave are stable. In this connection, 
we proceed to the first approximation, i.e., we 
shall consider quantities of the order H1y, v1y, 
H2y• V2y· 

3. FIRST APPROXIMATION 

The schematic picture of the disintegration of 
the initial wave is shown in the drawing. The 
dotted line indicates the contact discontinuity. 
The fast and slow magnetoacoustic waves are 
located on either side of it. The Alfven discon­
tinuities, indicated by the dashed lines, are located 
between the magnetoacoustic waves. The regions 
between the waves are denoted by the indices 1, 
1', 1", 2"", 2"', 2", 2', 2. We shall denote the 
corresponding magnetohydrodynamical quantities 
by H1y, Hl,y •... , etc. 

I 

/ ;" z"" z"' z" : i z 
I 
I 
I 
I 

11~ .1ji .1: de .1~ Ll; L1: 

The discontinuities in the magnetohydrodynam­
ical quantities on waves of small intensity are re­
lated among themselves in first approximation in 
the following way: 

fast magnetoacoustic wave: 

+ + v--L).+vy = - L).+H 11 j 4rrp2 ; (5) 

slow magnetoacoustic wave: 

+ 2 + L)._p = c2L)._p, (6) 

contact discontinuity: 

L).cp =/= 0. 

.6. denotes the discontinuity undergone by the mag­
netohydrodynamical quantity in the passage of the 
wave. The upper index on .6. gives the direction 
of motion of the wave: the sign ( +) to the right, 

the sign (-) to the left; the lower indices ( +), 
(-), (A), and (c) correspond to the fast and 
slow magnetoacoustic waves, the Alfven wave and 
the cqntact discontinuity, respectively. All dis­
continuities not written down are equal to zero in 
the first approximation. 

On the Alfven waves, the relations 

H~y = "JlH;y, V~y = v;y + v;y ('fn- 1 ); (7) 

H~11 = "J 2H~11 , v~11 = v~11 + V~11 (1 - "f/2). (8) 

are satisfied. 
The remaining magnetohydrodynamical quanti­

ties do not change on Alfven discontinuities. The 
value of 1Jt is equal to unity if the Alfven wave 
traveling to the left is absent, and is equal to -1 
if this wave intersects the magnetic field at the 
angle 7T. The coefficient 172 has analogous meaning 
for the Alfven wave traveling to the right. 

The following general boundary conditions are 
satisfied on the two magnetoacoustic shock waves 
traveling to the left, whose intensity is not small: 

!! [p (vx- U)] = 0, 

!! (Hxv 11 - (vx- U) H 11 ] = 0, 

L). [p(Vx-U)v11 -HxH11 j4rr] = 0, 

!! [p + p(vx- U)2 + H~j8rr] = 0, 

A[5 p 1 2 '-' 2--p+2(vx-U) 

(9) 

(10) 

(11) 

(12) 

(13) 

Let us consider in more detail Eqs. (9) - (13) 
on the fast magnetoacoustic wave traveling to the 
left. For simplicity of calculation, we shall con­
sider the quantity a to be small in what follows. 
Introducing the notation oHy = H1y- Hy. op = 
p!-p, ... , etc., we obtain from (9)- (13) 

op = p;i} 11~-2oH 11 1 ~ + 0 (rxH111), 

OVx =- V1xVy~-2oH11 / V4rrp1 + O(rxHlY), 

where {32 = VJx - c! . 

(14) 

In order to find the quantities oHy, U_, .6.kcP, 
.6.~p, .6.:Hy, we return to the five boundary condi­
tions (9)- (13) on the slow magnetoacoustic shock 
wave traveling to the left. These equations lead 
to the following results: 
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Ll:tH y - 2v1y + 2V1Y + 2v2y + 2V2y (1- '1)2)- 1J2V2y V ~ + 0 (a.2H1Y) 

'''l2 Y 4np2 = 2 + Y P2/ P1 
(15) 

(16) 

Equations (15), (16), together with the formulas 
(4), (5), (6), (14) permit us to determine the values 
of the magnetohydrodynamical quantities in all re­
gions for small a. 

4. STABILITY OF ALL THE WAVES GENERATED 

As we shall now show, the requirement of stabil­
ity of the waves permits a unique determination of 
the values of the quantities 17, 1/1> and 172• 

We begin with the slow magnetoacoustic wave. 
For its stability, it is necessary that 

v;x- u_ < u;_; 

V~x-U-> u~_; v:x-U-<V~x· (17) 

The first and second of these inequalities reduce 
in zeroth approximation to the relations v2x < c2, 

V x > u_. The first of these is satisfied by virtue 
of (1'), and the second is an identity. In view of 
the smallness of H1y, v1y. H2y, v2y, these in­
qualities remain valid in higher approximations. 
The last inequality of (17) reduces to the relation 

't)'t)1 (V1v- vlY + V2y + V 2vl > 0. (18) 

for small a. 
The conditions for stability of the fast magneto­

acoustic wave traveling to the left have the follow­
ing form 

V1x-U+>u1+, V~x-U+<u~+' V~x-U+> V~x· (19) 

The first two inequalities of (19) reduce in 
zeroth approximation to the relations v 1x > V 1x, 
v X < u+. The first of these is satisfied by virtue 
of (1), while the second is an identity for Hy ,r. 0. 
The last of the inequalities (19) reduces, for small 
a, to the expression 

't)HlY > 0 if 't) =sign Hl!!. (20) 

We shall now consider the boundary conditions 
on the initial wave, connecting the quantities H1y. 
Vty• H2y, v2y. For small a, they reduce to the 
relations 

V2y-V1y=V1y; V2y=-2cx2Viy/(l-p1/p2)· (21) 

It follows from the relations (18), (21) that 

'l/1 = 1, (22) 

i.e., the Alfven discontinuity traveling to the left is 
absent. 

We note that upon satisfaction of the inequalities 

(17), (19), waves traveling to the left diverge. 
Equations (15) and (21) show that I H2y I » I H2y 1. 

This increase in the magnetic field or in the fast 
magnetoacoustic wave is evidence that the latter is 
a shock and not a self-simulating wave. For such 
a wave and for small a, the relation 

~tP = (~:tH u)2(8-r. (V~x- c~) < 0, (22a) 

is valid, indicating that this shock wave is a com­
pressional wave. It then follows that it is thermo­
dynamically stable. Proof of the mechanical stabil­
ity of this wave is not carried out, since it requires 
the solution of the problem with account of quanti­
ties of the order Hfy· However, assuming that 
such stability does exist, we can determine the 
value of 172. In fact, the tangential magnetic field 
has the same direction 7 on the two sides of the 
stable magnetoacoustic shock wave. This means 
that the quantities H2y and l!.!Hy have the same 
sign. According to Eqs. (15), (21), this takes place 
for 112 = -1. 

Thus, the unstable shock wave under considera­
tion disintegrates into four waves (if we neglect 
waves whose amplitudes are of the order of aH1y ): 
a fast magnetoacoustic shock wave traveling to the 
left with amplitude of the order a and velocity of 
the order V1y; a slow magnetoacoustic shock wave 
traveling to the left with amplitude which differs 
slightly from the amplitude of the initial wave, and 
a velocity of the order aH1y; an Alfven discontin­
uity traveling to the right and making an angle 7l' 

with the magnetic field; and, finally, a fast magne­
toacoustic shock wave traveling to the right with 
amplitude of the order H1y. 

The inequality I U + I » I U_ I leads to the result 
that the process of disintegration of the initial wave 
is accompanied by an increase in entropy. This 
means that the shock wave under consideration is 
unstable relative to disintegration not only from 
the viewpoint of mechanics but also in a thermody­
namic sense. 

In conclusion, we note that the case in which the 
magnetic field is strictly perpendicular to the ini­
tial unstable wave is excluded, since in this case 
the unstable wave cannot disintegrate spontane­
ously. However, upon collision of it with magneto­
acoustic shock waves of small intensity, which are 
incident on it from two sides, it disintegrates into 
stable waves in which two of them have finite am­
plitude. This follows from the calculation carried 
out above; the boundary conditions (21) are re­
placed by the relations 



906 G. Ya. LYUBARSKII and R. V. POLOVIN 

(22b) 

which hold for fast magnetoacoustic shock waves 
of low intensity and for Hy « Hx. The number 
of Alfven waves arising in the disintegration of 
an unstable wave is equal to zero, one or two, 
depending on the relation between V1y and V2y· 
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their sincere gratitude to A. I. Akhiezer, A. S. 
Kompaneets, L. D. Landau and I. M. Lifshitz 
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