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The energies and the wave functions of the rotational states ( J :::: 4) of non -axial nuclei are 
calculated, and the reduced probabilities for E2 transitions between these states are de­
rived. Conditions under which the rotational states can be characterized by a quantum num­
ber K are ascertained. It is shown that, when the shape of the nucleus deviates from axial 
symmetry, the interval rule 1-3.3-7 -12 observed in the rotational band of axial nuclei 
is violated. The theory is compared with experiment. 

THE rotational states of even -even nuclei have 
been studied by Davydov and Filippov1- 3 under the 
assumption that the equilibrium shape of the nu­
cleus can be represented by a tri-axial ellipsoid. 
Analytical expressions for the energy of the rota­
tional states with spin 2, 3, and 5 were found, and 
the transition probabilities between these states 
were calculated. In particular, it was shown that 
the theory made it possible to find a single-valued 
relation between the ratio of the energy of the two 
levels with spin 2 and the ratio of the reduced 
probabilities of E2 transitions from the second 
level ( J = 2 ) to the first level (cascade transi­
tion) and directly to the ground state (direct 
transition ) . 

In the present work, results are presented of 
numerical calculations of the energy of rotational 
states with spin 4, 6, and 8 for different values of 
the parameter y which determines the deviation 
of the shape of the nucleus from axial symmetry. 4 

The wave functions of these excited states and the 
transmission probabilities between them are cal­
culated. In Sec. 3 the conditions are given under 
which the rotational states of nuclei may be de­
scribed by approximate wave functions correspond­
ing to states with a given value of the projection of 
the total momentum on axis 3 of the nucleus. Ap­
proximate formulae which determine the reduced 
probabilities of E2 transitions between rotational 
states of nuclei whose shape does not differ greatly 
from axially symmetric are derived. The theory 
is compared with experimental data in Sec. 4. 

1. ENERGY OF EXCITED STATES WITH SPIN 
4, 6, AND 8 

The energy of rotation of a non -spherical even­
even nucleus is given, in the adiabatic approxima-

tion, by the Schrodinger equation 

(H -s)<f = 0, (1.1) 

where E is measured in units of n2/4B{32, and 
the operator H is given by the formula 

3 

H = f ~ J~sin-2 (y- f-21t/3), (1.2) 
1.~1 

where JA. are the projections of the operator of 
the total angular momentum on the axes of the co­
ordinate system fixed in the nucleus. The wave 
function corresponding to the state with total mo­
ment J, and fulfilling the conditions of symmetry 
found by Bohr, 4 can be represented in the form 

cpJM= 2j IJK>AK, (1.3) 
A>o 

where 

(1.4) 

The functions D~K in Eq. (1.4) are functions of 
the Euler angles that determine the orientation of 
the principal axes of the nucleus in space. It can 
be shown that the wave functions (1.3) form the 
basis of a totally symmetric representation of the 
group D2 (see reference 1 ) , the elements of 
which are the rotation through 180° around each 
of the three principal axes of the nucleus. 

Substituting Eq. (1.3) in Eq. (1.1), and making 
use of the value of the matrix element of the op­
erator of the rotational energy (1.2) acting on the 
wave functions (1.4), 
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<JK\H\JK>=a~~ [J(J+I)-K2J+ 0~2 , 2. PROBABILITIESOFELECTRICQUADRUPOLE 
TRANSITIONS IN THE ROTATIONAL BAND 

(JK -'--21 HI JK> =a-;~ {(I +oKo) (J- K) 

x (J -K- I)(J +K +I) (J +K +2)}''•, 

x = sin-2 (I- 2:t I 3), ~ = sin-2 (I+ 2:t I 3), 

' _ • - 2 • _ {0, for K=J-0 
o - Sin "(, uKo- 1, for K=O ' 

we obtain for each value of J a system of alge­
braic equations for the value of the coefficients 
AK in the wave functions (1.3). For instance, 
for J = 4, the Schrodinger equation (1.1) is re­
duced to a system of equations 

[5 (oc + ~) -s]A0 + (3 V512) (oc- p)A2 = 0, 

(3 V5;2) (oc- p)Ao + [4 (oc + [l) + 23- s] A0 

+ <V7;2)(oc- ~)A4 = o. 
<V7 ;2)(oc- p)A2 + [(oc + p) + 8o-s]A4 = 0. (1.5) 

The energy of the corresponding rotational states 
is determined from the condition that the system 
(1.5) has a solution. Having solved each of the 
systems of equations (for corresponding values 
of E ) we can determine the wave functions of 
these states. 

The wave function (1.3) and the values of the 
energy of the states with spin 2, 3, and 5 can be 
expressed in terms of the parameter y by ana­
lytical functions. The formulae are given in ref­
erences 1 and 2. For the energy of the states 
with spin 4, 6, and 8, equations containing the 
third, fourth, and fifth power of E are obtained 
respectively. 

The results of a numerical solution of these 
equations for several values of y are given in 
Table I. The number in parentheses next to E 

indicates the value of the spin in the excited 
state, whereas the index below denotes the num­
ber of the level with a given spin. 

The reduced probability of electric quadrupole 
transitions between the two states described by 
the functions 1/JJmi and 1/JJ'm'f is given by the 
expression 

B (E2; i-+ f)= 16 TC (:J + 1) ~ I (J'm'f I Q2f.L r Jmi) \2, (2.1) 
m'u.m 

where 

Q~ Q {D2 I 1 (D~ ' D2 ) . l 
2" = e 0 f.L0 cos1 1 V2 '"2-:- ~-<,-2 Sin"( f, 

The wave functions of the states with spin 2 
and 3 are given in reference 1. Coefficients AK 
of the wave functions of the state with spin 4 

c/J4mi = yg I 81t2 { AOiD~o + ; 2A2i (D~z -'- D~. - 2) 

(2.2) 

can be calculated by solving the system of equa­
tion (1.5) for each of the three roots of the equa­
tion determining the value of the energy of these 
levels. The values of the coefficients AKi for 
three levels with spin 4 are given in Table II. 
Also presented in the table are the values of the 
coefficients BKi of the wave functions 

o/smi =-V 13 / 87t2 { BoiD'fno + / 2 B2i ( D'/n2 + or;,, - 2) 

+ y~2 B4i (D'/n4 +or;,, -4) 

+ /2 Bs; (D~6 + D~n. -s)} (2.3) 

of the states with spin 6. 
Using Eq. (2.1) and the wave function with 

J = 2 and 4, one can calculate the reduced tran­
sition probabilities between these states. Thus, 
for the electric quadrupole transition, the reduced 
probabilities (in units of e2Q~ /167T) are given by 

TABLE I. Dependence of the rotational energy (in units of 
ti2 /4B,B2 ) of even-even nuclei on the parameter y 

el( 4) 1 
e2 (4) 
ea ( 4) 
Et (6) 
E2 (6) 
~1 (8) 

3.33 
= = 28 
= 48 

10 

13.54 14.12 
274.1 77.73 

1056 268.1 
28.42 29.51 

270.5 93.51 
48.60 50,26 

15 20 22.5 25 1 27.5 1 30 

15.00 15.81 16.01 16.06 16.02 16 
42.48 32.26 30.92 31.21 32.69 34 

122.5 71.92 58,51 4!l.20 42.85 40 
30.65 30.78 30.51 30.33 30.06 30 
60.46 54,52 55.74 57.:~3 50.71 60 
50.87 49.60 48:94 48,38 48.10 48 
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TABLE II. Coefficients determining the wave functions (2.2) 
and (2.3) of states with spin 4 and 6 respectively 

10 15 20 22.5 25 27.5 30 

I 
I 

I Ao1 1 1 0.999 0.993 0.955 0,909 0.852 0.792 0.739 
A21 0 0.003 0.030 0.114 0.296 0.414 0.522 0.605 0.661 
A,1 0 10-6 10-4 0.001 0.010 0.022 0.042 o:o76 0.125 
Ao2 0 -0,003 -0.03 -0.114 -0.296 -0.415 -0.523 -0.602 -0.559 
A•• 1 1 0.999 0.993 
A,. 0 5·10-4 0.004 0.015 
Bot 1 1 0,998 0.973 
B21 0 0.0075 0.065 0.232 
Bu 0 10-4 6 ·10-4 8 ·10-8 
Bst 0 10-7 1Q-6 6 ·10-5 

the formula 

b(£2; 4i---">2f)= 1: 6 {cos"(·[6Ao;ar+VI5A 2;br] 

+sin 1· !VI5A2;Gf + Ao;bt + V35A4ibt)} 2 , (2.4) 

where af and bf are coefficients that determine 
the wave functions of spin 2 (see reference 1). The 
reduced transition probabilities between states 
with spin 4 are given by the expression 

b (£2; 4i---';> 4f) 

= (77f1 {2 cos 1 · [7 A4iA4t- 5 AoAot- 2 A2iA2rl 

+ V3 sin 1 · [3 V5 (A2iAot + Ao;A2t) 

+ V7 (A2A4/ +A.iA2r)]}2. (2.5) 

The reduced probabilities of a transition between 
states with spin 4 and 3 are given by the expres­
sion 
b(£2; 4i---">3) 

= + {2 V3cOS"(·A2i +sin"( rV5An;- V7 A4i]}2. (2.6) 

Finally, we shall give the equation determining the 
reduced probabilities for the transition 6i __.... 4f: 

b (£2; 6i -~ 4f) 

= th- {cos 1 [3 V5 Bo;A0r + 4 ¥2.1 B2iA21 + 3 B4iA4tl 

+sin'\' rV3 BoiA2t+ B2,A4t I VTO + Vf4 B2iAot 

+ V2I BMA2t+ V 49.5 Bs;A41]}2 • (2. 7) 

For the sake of brevity, we shall call the energy 
levels 0, 21, 41, 61, and 81 (where the first fig­
ure denotes the spin of the level and the second the 
number of the level) the levels of the "principal 
rotational band." These energy levels are repre­
sented in the figure by solid lines. For y __.... 0, 
the states of the "principal rotational band" pass 
over to the levels of the axially symmetrical nu­
cleus. All other energy levels represented in the 
figure (by dotted lines) tend to infinity for y __.... 0. 
We shall call these energy levels "anomalous." 

Using the values of coefficients determining the 

0.954 0.907 0.842 0.754 0.500 
0.043 0.074 0.128 0.264 0.661 
0.878 0.817 0. 766 0.714 0.672 
0.476 0.570 0.633 0.674 0.695 
0.043 0.081 0.113 0.189 0.254 
9·10-4 2.8·10-8 6.1·10-3 0.015 0.031 
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wave functions, one can calculate from Table II 
and reference 1 the probabilities of electric quad­
rupole transitions between various rotational 
states of the nucleus. The values of some of these 
probabilities are given in Table III. 

Taking the results of reference 1 and the data 
of Table III into account, we see that the values of 
reduced probabilities for electric quadrupole tran­
sitions between different rotational states of an 
even-even nucleus can be split into three types: 

1. Transitions with reduced probabilities (in 
units of e2Q~ /1671') on the order of unity. These 
transitions include the cascade transitions be-· 
tween the levels of the principal rotational band 
and the cascade transitions between "anomalous" 
rotational levels. For example, the transitions 
3 __.... 22, 42-- 3, and 42 __.... 22 belong to this 
type. 

2. Transitions beween the levels of the prin­
cipal rotational band and "anomalous" rotational 
levels with another value of the spin. Examples 
of this are the transitions 3 __.... 21, 41--22, 
42 __.... 21, and 61 __.... 42. The reduced probabili­
ties of such transitions are equal to 0 for y = 0° 
or 30°, and are unlikely to occur for other values 
of y. 
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TABLE III. Reduced probabilities for electric quadrupole 
transitions (in, units of e2Q~ /1671") between certain 

rotational states of even -even nuclei 

y' 10 

..... 41) 0 0.0060 0.034 
->21) 1.429 1.418 1.395 
->22) 0 3.5·10-4 0.0023 

..... 21) 0 4.1·10-3 0.011 

.->22) 0.595 0.591 0.575 

...... 3) 1.333 1.323 1.282 
' .... 41) 0 0.0138 0.0624 
--+41) 1.573 1.563 1.547 

b(E2; 3 
b (E2; 41 
b (E2; 41 
b (E2; 42 
b (E2; 42 
b(E2; 42 
b(E2; 42 
b (E2; 61 
b(E2; 61 .... 42) 0 10-3 7.7·10-3 

3. Transitions between levels with identical 
value of the spin. Examples of this are the tran­
sitions 22- 21 and 42 --41. The reduced prob­
abilities of such transitions are equal to 0 for 
'Y = 0°, and then markedly increase with increas­
ing y, attaining maximum values of the order of 
unity for y = 30°. The transition 3 - 41 belongs 
to this group. 

3. THE QUANTUM NUMBER K AND ITS SELEC­
TION RULE 

The wave functions (1. a) of rotational states of 
even-even nuclei are represented by linear combi­
nations* of functions (1.4) corresponding to a state 
with a given value of the projection of the total 
momentum (quantum number K) of the nucleus 
on the axis 3 of the coordinate system fixed in the 
nucleus. The value of the coefficients that deter­
mine the contribution of different terms of such 
linear combination depends on the parameter y. 

As can be seen from Table II and reference 1, 
the wave functions of the rotational states of the 
nucleus can be approximated for y < 15° by ex­
pressions containing only one value of K. Thus, 
the wave function of states having spin 2 for y < 
15° can be replaced by the approximate functions 

<Ji~r = 120) = (1i I 81t2/ 1' D;.c, 

<Jig2 = 122) = (5 I l61t2)"' (D;,2 + D;., -2)· (3.1) 

Under the same condition, the wave function of 
states having spin 4 are approximated by the ex­
pression 

Y~l = 140) = (9 I 81t2 )
1
" v;,,o, 

<jl~2 = 142) = (9 I l61t2)'1' (D'f,2 + Din, - 2), 

<P~a = I 44) = (9 I 16rc2) 'I, (D'f,4 + m,, -4) (3.2) 

and so on. 
In the cases (y < 15°) where the rotational mo-

*Only the function of the rotational state with spin 3 
corresponds to a given value of K = 2 (see reference 1). 

15 20 1 22.5 1 25 1 27.5 1 30 

0.130 0.406 0.619 0.821 0.955 1.00 
1.377 1~371 1.366 1.365 1.378 1.389 
0.010 0.033 0.044 0.039 0.016 0 
0.008 4 ·10- 4 0.009 0.021 0.018 0 
0.543 0,481 0.447 0.435 0.484 0,595 
1,172 0.978 0.680 0.448 0.210 0 
0.167 0.313 0.339 o:311 0.271 0.273 
1.562 1.623 1.671 1.703 1.725 1.731 
0.035 0.052 0.033 0.011 0.0023 0 

-

tion of the nucleus can be described by approximate 
functions of type (3 .1) and (3. 2), the rotational states 
can be characterized by two quantum numbers J 
and K. In this approximation, the levels of the 
principal rotational band are characterized by the 
value K = 0. "Anomalous" rotational states can 
then also be subdivided into system of levels with 
various K = 2, 4, 6 ... 

The reduced probabilities of electric quadru­
pole transition between states described by approx­
imate functions I JK> different from 0 (in units 
of e2Q~ /1671") have the form 

bo (£2; J K ~ J'K) = 5 (2 J OK I J'K)2 cos2 1, 

bo(E2; JK~J', K+2) 

= +(1 + oKo) (2 J 2K I J', K + 2)2 sin2 j, 

bo(E2; JK~J', K-2) 

=-{-(! +3K2)(2J, -21\.IJ', K-2)2 sin2 1. 

The rules with respect to the probabilities of tran­
sitions given at the end of the last paragraph are, 
in this approximation, reduced to the selection 
rule 

D.K = 0 (3.3) 

for the most probable transitions. Transitions vio­
lating the condition (3.3) are called K -forbidden 
transitions. 

In view of the fact that the quantum number K 
is an approximate one, Eq. (3.3) is applicable only 
for nuclei with y < 15°. For y > 15°, one should 
use the accurate functions (1. 3). The results of 
Sec. 2 make it possible to estimate the error 
which occurs when the approximate functions 
(3.1) and (3.2) are used instead of the accurate 
function (1.3). 

It should be mentioned that in several of 
papers, 5-8 in the analysis of the relative transi­
tion intensities, certain excited states with spin 2 
and 3 were assigned the quantum number K = 2. 
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The authors of these papers regarded these ex­
cited states as so-called y -oscillations, and ar­
bitrarily assumed the frequency of these oscilla­
tions. If we consider such states as rotational 
states of a non-axial nucleus, then the mutual 
position of states and the relative transition prob­
abilities between them can be readily explained. 
In that case, the theory used only one parameter 
y, which is determined in an unique way from the 
ratio of the energy of two levels with spin 2 (see 
following section). 

4. COMPARISON WITH EXPERIMENT 

In order to facilitate the comparison of the re­
sults obtained with experimental data, we show in 
the figure the ratio of the energy of rotational 
states with different values of spin to the energy 
of the first excited state plotted as a function of 
the parameter y. The parameter y is deter­
mined in an unique* way in the interval 0 < y < 30° 
from the ratio of the energies of two levels with 
spin 2 by means of the formula 

£2 (2) I £1 (2) = (1 + V 1- ~ sin2 31 -] 

X [I-V 1- ~sin2 3"( t 1
• (4.1) 

Having thus determined the value of y, we can, 
with the help of the figure, find the position of the 
remaining rotational states with different values 
of the spin. It can be seen from the figure that 
the deviation of the shape of the nucleus from a 
rotational ellipsoid leads to the violation of the 
interval rule 1-3.3 -7 -12 in the principal 
band, which can be observed in the rotational 
band of axially symmetrical nuclei. Thus, for 
instance for y = 30°, the principal rotation level 
should satisfy the interval rule 1-2.67-5-8. 

The experimental values of the ratios of the 
excitation energy of nuclei Os 190, Dy160 , u232 , 

Pu238 (data of reference 9 ) , U234 (data of refer­
ence 10 ) and Os 188, Os 186 (data of reference 14 ) 
to the energy of their first excited state are de­
noted by points in the figure. It can be seen that 
the theory predicts correctly the sequence of spins 
and the experimental energy ratios. A slight de­
viation of the experimental points from theoretical 
values can be accounted for by introducing a cor­
rection term 

-aJ2(J + 1)2, (4.2) 

*We disregard the ambiguity due to the fact that, in even­
even nuclei, the rotational energy and the transition prob­
ability between them are the same for various y and 77/3- y 
(see reference 1 and 3). 

which takes the connection between the rotation and 
internal excitation of the nucleus into account. The 
value of this correction term can be used as a cri­
terion of the applicability of the adiabatic approxi­
mation. It should be noted that, in an analysis of 
rotational spectra from the point of view of the 
assumption about the actual form of the nucleus, 
the deviation of experimental energy ratios from 
the interval rule 1-3.3 -7 -12 was assumed to 
be wholly due to the violation of the adiabatic con­
dition. This has led to a great overestimate of 
the role of the correction term (4.2). In fact, the 
deviation from the interval rule for axial nuclei 
is mainly due to the violation of the axial symme­
try of the nucleus. Of special interest, in that re­
spect, are the experimental data on the levels 2, 
4, 6, and 8 of the Os190 nucleus, the position of 
which has been determined by Scharf-Goldhaber 
et al. 11 and Aten et al. 12 in the study of cascade y 
transtions in the decay of the isomere Os190 with 
a decay time of ten minutes and spin 10-. As has 
been noticed by the authors, 11 •12 the experiment­
ally-observed sequence of spins corresponds well 
to the sequence of spins of the levels of the nucleus 
Hf180 , which has a well-defined rotational spectrum. 
However, the observed ratios of energies are sub­
stantially different from those obtained theoretic­
ally for axially symmetrical nuclei. It has been 
mentioned in this paper that the experimentally 
observed ratios 1-2.93-5.62-8.93 cannot be 
obtained theoretically even by applying the cor­
rection (4.2). 

Apart from the variation of the interval rule 
for the levels of the principal rotational band, the 
violation of axial symmetry of a nucleus leads to 
the appearance of new rotational levels (" anoma­
lous"), such as, for instance, the second levels 
with spin 2 and 4 in Os 190 • These levels do not 
appear in the decay of the isomer of Os 190 with 
ten minutes half life, but they appear in the K -
capture decay of Ir190• 

The features of the spectrum of the Os 190 nu­
cleus are due to the large value of y = 21.4 o cor­
responding to an experiment~! ratio of energies 
E22 /E21 = 3.15. Using the value of y = 21.4, one 
can calculate the values of the given probabilities 
and the relative probabilities of electric quadru­
pole transitions in the nucleus Os190• These val­
ues are given in Table IV, together with the tran­
sitions connected with the theoretical level with 
spin 3, a level which has not yet been observed 
experimentally. With Os190 nucleus as an ex­
ample we have shown that the theory of non-axial 
nuclei makes it possible to calculate the relative 
probabilities of electric quadrupole transitions 
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TABLE IV. Relative transition probabilities between various 
rotational levels of the Os190 nucleus 

E2-tran 
sition 

.. Transi-
tion en-

ergy 
Redu<;e_d I Reiative 

probab1hty probability 
(kev) (e2~/16l'T) I ' 

186 0.934 I 1 
360 1.33 39.3 
400 0.467 21..) 
586 0.066 21.9 

21-> 0 
41-> 21 
22--> 21 
22-> 0 
22--> 41 40 

I 
0.071 3.5-10-5 

3--> 21 
3--> 22 

604 
204 

0.18 
1.GO 

between all rotational states. The values of the 
relative transition intensities found provide a 
qualitative explanation for the observed decay 
schemes of the excited states of Os190 • Thus, 
for instance, a decay of the isomeric state of 

69 
2.9 

Os190 takes place only through the series of cas­
cade transitions through rotational levels of the 
main rotational band without a marked excitation 
of the "anomalous" rotational levels. The "anom­
alous" rotational levels 4• and 2• are excited in 
the K -capture decay of the Ir190 nucleus. It fol­
lows from Table IV that the nucleus, after emit­
ting an E2 photon, can pass from the excited 
states corresponding to an "anomalous" rotational 
level 4 + either into the rotational level with spin 
4 + in the principal rotational band with subsequent 
cascade emission of 2 photons, or (with the same 
probability ) into the level 2 + corresponding to an 
"anomalous" rotational level. From this state, 
the transition either occurs to the state with spin 
2• of the principal rotational band, or (roughly 
with the same probability) directly to the ground 
state. According to the theory, the Os190 nucleus 
should have an excited state ( ~ 790 kev) with 
spin 3 +. However, as can be seen from Table IV, 
the excitation of this rotational level is not very 
probable since, from the higher levels 4 + and 6 +, 

transitions to other rotational states are much 
more probable. It is possible that, because of 
that, this rotational state has so far not been dis­
covered. 

Transi-
E2-tran- tion en-
sition ergy 

(kev) 

:cJ--> 41 I 244 
61--> 41 500 
42--> 22 540 
42--> 41 580 
42-> 21 940 
42--> 3 336 
42-+ 61 80 

Reduced 
probability 
(e2~/16l'T) 

0.515 
1.6 
0.461 
0.319 
0.007 
0.813 
0.06 

I 

Relativ e 
y probabilit 

2.14 
251 
100 
100 
24.G 
16 .. 1 

9 .1Q-• 

In reference 1, a comparison has already been 
made of the theoretical values for transition prob­
abilities with experimental data for levels having 
spin 2 and 3. Since the writing of reference 1 new 
experimental data have appeared on the ratio of 
the reduced probabilities of cascade and direct 
transitions. Table V presents the experimental 
data ( McGowan13 •6 ) and theoretical values, ob­
tained from the formula 

b (£2; 22-+ 21) 

b (E2; 22-+ 0) 

_ 20sin2 3r 

- 7{9-8sin2 3r-[3 -2sin2 3r]V9-8sin2 ar} 

The parameter y is determined from the ratio 
(4.1). The experimental data13 and theoretical 
values 
b(£2; 22-.. 21) 

b (£2; 21 --+ Oj 

20 sin2 3r 

7 {9- 8 sin 2 31 + [3- 2 sin2 3rl ~ 9 ·- 8 sin2 31 } 

are also given for the ratio of the reduced transi­
tion probabilities ( 22 - 21 ) and ( 21 - 0). It 
can be concluded from Table V that this theory 
makes it possible to establish a single-valued 
relation between the given ratio of the reduced 
transition probabilities and the ratio of the en­
ergy of both levels with spin 2. 

Experimental values of the ratio of intensity 
of E2 transitions 3-41 and 3- 21 in the 
Sm152 nucleus are given by Nathan and Waggoner. 5 

TABLE V. Ratio of the reduced probabilities of electric 
quadrupole transitions for certain nuclei 

N ucleus £22/£21 y 

I b (E~; ~~ 21)/b (£2; 22 ~ 0) I b (£2; 22 ~ 21)/b (£2; 21- O) 

I Theory I Experiment [ Theory l Experiment 

Th2az 15.4 10.3 1. 7 1.8 0.052 0.014 
Gd15' 8.11 14,0 2.6 1.94 - -
wts• 8.02 14 .I 3,0 2,36 0.18 0.12 o5tss 4.08 19,3 4,5 2,7 0,32 0.19 
Ost•o 2.98 21.4 7.1 9.7 0.50 0,52 
Os102 2.37 25,4 21 9.1 0,90 O~G8 
Tet22 2.23 26,3 40 30 1,29 2.8 
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This ratio corresponds to the ratio of reduced 
probabilities 

{b(£2; 3~41)/b(£2; 3~21)} exp= 1.88. 

From the ratio E22 /E21 = 8.9 for Sm152 nucleus, 
it follows that y = 13.5°. The theory then leads 
to the value 

{b(£2; 3_,..41)/b(£2; 3-->-21)}theor= 1.37, 

which is in agreement with the experimental ratio. 

1 A. S. Davydov and G. F. Filippov, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 35, 440 (1958), Soviet 
Phys. JETP 8, 303 (1959). 

2 A. S. Davydov and G. F. Filippov, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 35, 703 (1958), Soviet 
Phys. JETP 8, 488 (1959). 

3 A. S. Davydov and G. F. Filippov, Nuclear 
Phys. 8, 237 (1958). 

4 A. Bohr, Dan. Mat.-Fys. Medd. 27, 14 (1952). 
A. Bohr and B. Mottelson, Dan. Mat.-Fys. Medd. 
27, 16 (1953). 

5 o. Nathan and M. Waggoner, Nuclear Phys. 2, 
548 (1956/57). 

60. Nathan, Nuclear Phys. 4, 125 (1957). 

7 J. Juliano and F. Stephens, Phys. Rev. 108, 
341 (1958). 

8 G. Hickman and M. Wiedenbeck, Phys. Rev. 
111, 539 (1958). 

9 B. S. Dzhelepov and L. K. Peker, CxeMbl 

pacnaAa paAKOaKTKBHbiX HAep, (Decay Schemes of 
Radioactive Nuclei ) U.S.S.R. Acad. Sci. Press 
1958. 

10 Strominger, Hollander, and Seaborg, Revs. 
Modern Phys. 30, 585 (1958). 

11 Scharf-Goldhaber, Alburger, Harbottle, and 
McKeown, Bull. Amer. Phys. Soc. 2, 25 (1957); 
preprint, 1958. 

12 Aten, de Feyfer, Sterk, and Wapstra, Physica 
21, 740, 990 (1955). 

13 F. McGowan, Paper presented at the Interna­
tional Nuclear Physics Conference in Paris, July 
1958. 

14 F. McGowan and P. Stelson, Bull. Amer. Phys. 
Soc. 3, 228 (1958). 

15 R. Diamond and J. Hollander, Nuclear Phys. 
8, 143 (1958). 

Translated by H. Kasha 
363 


