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The level scheme of nucleons in a spheroidal well with vertical walls is computed by using 
the asymptotic expansions of spheroidal wave functions. The results obtained are in good 
agreement with the experimental data on the spins and parities of the ground and isomeric 
states of nonspherical odd nuclei. 

THE energy level scheme for nucleons in a non­
spherical axially s"ymmetric nucleus proposed by 
Nilsson1 agrees satisfactorily with experiment. 
Nilsson's scheme was obtained on the assumption 
that the effective field in which the nucleons move 
is described by the potential of an anisotropic 
oscillator. As is well known the approximation of a 
harmonic oscillator for the self-consistent nuclear 
field is good only for light nuclei, whereas for 
heavy ones the self-consistent potential is closer to 
that of a rectangular well (cf., for example, refer­
ence~). Therefore Nilsson did not simply use the 
harmonic oscillator potential in constructing his 
scheme, but added to the Hamiltonian a term pro­
portional to the operator of the square of the or­
bital angular momentum of the nucleon, and thereby 
made his potential closer to that of a rectangular 
well. 

Nevertheless, it is of interest to construct an 
energy level scheme for nucleons in a rectangular 
spheroidal well. This problem entails consider­
able mathematical difficulties. It was first solved 
by Moszkowski3 for the lowest states of the nucleons 
by the perturbation theory method. Later Gottfried4 

constructed an energy level scheme for nucleons in 
a rectangular deformed well. In his paper Gottfried 
expanded the potential in powers of a parameter 
that describes the deviation from the spherical 
shape, and starting with the spherically symmet­
rical case as the zero-order approximation, he 
solved the secular equation which refers to all the 
nucleon states under consideration. However, as 
was pointed out by Kumar and Preston, 5 in doing 
this he incorrectly took into account terms pro­
portional to the square of the deformation, which 
is important in the case of nuclei whose shape de­
viates appreciably from spherical. Moreover, in his 
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calculations Gottfried did not take into account the 
existence of the continuous spectrum which, cer­
tainly in the case of the higher lying levels, may 
affect the result appreciably. Finally, the choice 
of the zero-order approximation for the functions 
was no improvement, and this, of course, also ad­
versely affected the convergence of the method, 
particularly for large values of the parameter des­
cribing the deviation from the spherical shape. 
Thus, it has become necessary to carry out the 
calculation of the energy levels of nucleons in a 
rectangular spheroidal well by a method which 
would be applicable to large de.formations and to 
high nucleon energy levels. 

Such a method was proposed in the preceding 
papers6•7 by the present author. The problem of 
finding the energy levels of nucleons of mass M 
in a rectangular potential well having the spatial 
shape of an ellipsoid of revolution reduces, as is 
well known, to the solution of the Schrodinger 
equation 

where c is the velocity of light, 8 and ~ are 
the nucleon spin and momentum operators, K is 
a dimensionless constant. The potential V ( r ) has 
the form: 

_ {0 within the ellipsoid (x2 + y 2)fa2 + z2jb2 = 1 (2 ) 
V (r) - Vo outside the ellipsoid 

The semi-axes of the ellipsoid a and b are re­
lated by the condition that its volume is independ­
ent of the degree of deviation from the spherical 
shape: 

(3) 
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where r 0 is the radius of a sphere of equal volume. 
The solution of Eq. ( 1 ) can be expressed in 

terms of spheroidal functions for which asymptotic 
expansions have been obtained in inverse powers 
of the parameter y = f (2ME )1f2/ti, where f is 
half the distance between the foci of the ellip-
soid (2). The details of the calculation and nu­
merical estimates of the range of applicability 
of this method are described in references 6 
and 7. 

Numerical calculations of the nucleon energy 
levels were carried out on the "Ural" electronic 
computer of the P. N. Lebedev Physics Institute 

Nucleon energy level scheme in a rec­
tangular spheroidal well. Along the hori­
zontal axis are plotted the square of the 
eccentricity of the ellipsoid E2 and the 
corresponding ratio of the axes b/a, 
along the vertical axis is plotted the 
nucleon energy in units of h2 /2Mr0 2 • The 
numbers opposite the curves denote twice 
the value of the component of the angular 
momentum along the symmetry axis, while 
the sign signifies the parity of the state. 

for values of the constant V0 equal to 35, 42 and 
50 Mev. The spin -orbit coupling constant K was 
fixed by the condition that in the case of a spheric­
ally symmetric well the best approximation should 
be obtained to the scheme of Klinkenberg8 arrived 
at by means of an analysis of experimental data on 
the basis of the shell model. This condition is best 
of all satisfied by the value K = 30. The constant 
r 0 was everywhere taken equal to 8.4 x 10-13 em 
(which corresponds to A ~ 200 in the formula 
r 0 = 1.4 x 10-13 Al/3 em, where A is the atomic 
weight) . The calculations were carried out for 
values of the ratio of the semi-axes b/a taken 
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TABLE I 
I"' State of the odd nucleon. ow (n, l, j) 0 

"' Nucleus I> experi• Z scheme 
Q) 

theory N scheme' G scheme4 0 
ment (present work) z 

--
1 2 3 4 5 6 7 8 

Eul'" 0.4 5 I 2+ 5 I z+ 'lz+(1g 7IJ 51z+ (1g- 7h) 5,2+ (1g 7Jz) a 
Gdl•• 0.3 "1·- 3lz± "lz+ (ii 13lz) or 3/z+ (1i 13/z) or 3/2+ (ii 13!z) or 

"I·- (1h 9/z) "iz- (1h 9 /2) "I·- ( 1h 9 /2) 
Gdl57 0.3 3 1·- "lz± •;.+ (1P"/2) or •;.+ (1i 13 lz) or 312+ (1i 1312) or 

s;.-(1h 0 /z) "I·- (1h •;.) 3/z- (1h 9/2) 
Tb1so 0.4 S!z+ 3,2+ 3 /z+ (2d 'I•) 3/z+ (2d 5lz) 3/2+ (2d 5lz\ a 
Dyl&l 0.2 'I•+ 'I•+ slz+ (1i 1312) 5 / 2+ (1P312) 'lz+ (1i Jslz) 
Dy's3 0.2 'I·- 'I·- 512- (1h 9/z) 'I·- (1h 9 /2) 512- (1h 912) 

Erl67 0.4 7 lz+ 1!z+ 7 !z+ (fi IS /2) 11·+ (1i 13/2) 7 ;,+(fil"l•) 
1m1ss 0 ., liz+ liz+ 1 /z+ (2d 3 lz) 1/2+ (2d"lz) 1lz+ (2d 31z) b 
Yb'73 0.3 •;.- 5 I 2- 'I·- (2f 7 /2) 'I•- (1h 9 / 2) 5 / 2- (1h 111z) 
Lu 175 0.4 7 lz+ 7 lz+ 7 fz+ (1g 7 /.) 1lz+ (1g 7/z) 7/z- (1h 11 lz) c 

HP 77 0.3 7;.- 7 I.- 7/z- (1h 9 lz) 11z- (lh 9/zl 7,'.- (2f 7 /z) 

Hfl79 0.2 9 I z+ 9 lz+ 9 /z+ (1i 13/z) "lz+ (1i 13/z) "Jz• (1i l"lz) 
falSI 0.3 7 I •+ 7 lz+ 7 /z+ (1g 7/z) 1lz+ (1g 7/z) 7 lz+ (1g 71zl a 
w1s8 0.2 1 ;.- I lz- 1/z-('2f 5 lz) ~;.-cit 'hl ? d,e 
Reiss,Is7 0.2 5/2+ 5 lz+ 5f2+ (2d 5/z) 5/z+ (2d 5/z) •;.+ (2d 5/2) 
Qg189 0.1 3 I 2 •;.- •;.- (3p 3 /z) %- (3p 3lz) 'I•- (3p 31z) f 
Ir••J,Joa 0.2 •;.+ 3 lz+ •;.+ (2d 3/z) s;.+ (2d 3 /z) "I·- (2f 7 /2) g 
Ac227 0.2 3 ;. "I•± 3li"(1i 1312) or 3lz+ (1i 1"1•) or •;2+ (1i 1312) or h 

"I·- (1h 9/z) 3/z- (1/z "I•) 3/2- (1h 91zl 
u••• ±0.3 5Jz+ 5 I •+ 5 lz-(2g 9 /z) •;2+(1i 11 1z) or - i 

5l2+ (2g 9 /z) 
uzas ±0,3 'h 7;.+ 712 + ( 2g 9 I 2) or 712+ (2g 9 j2) or - j 

7;.+ (2g712) 7;.- (1j 15/2) 

Npzs' ±0.2 'I•+ 5f2+ •;.+ (1i 13 /2) s;.+ (1i 13!z) •;.+(it "'12) k 
Pu••• ±0.2 l/2t lf2+ 112+ (2g 7lzl or 1 /z+ (3d 5/z) or - l,m 

1 lz+ (2g 0/z) 1/z+ (2g 9/z} 
Am24t,••a ±0.3 • I.- "I·- 51.- (1h 9/z) •;,- (2/ 7/z) or 5/2- (1h 9 /z) n 

•;.- (111. "lzl 
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a. The odd nucleon state shown in the table which agrees with experiment is obtained in the N scheme if one supposes that 
the deformation is larger by a factor 1.5 or 2 than the experimentally observed one. 

b. The coupling disruption factor in the Z scheme; atheor = -0.67, aexp = -0. 76. 
c. In the G scheme it is more natural to take 7/,+(1g 7/,), than 7/,-(1h 11/,) given in reference 4. 
d. The coupling disruption factor in the Z scheme; atheor = -0.31, aexp = -0.18. 
e. In the G scheme, no tolerable agreement with experiment can be obtained. 
f. The result of the G scheme contradicts the experimental value of the spin of the ground state of Os189 • 

g. In the G scheme it is more natural to take 3/,+(2d'/,) than 3/,-(2f %) given in reference 4. 
h. As to the sign of the quadropole moment of Ac227, see reference 17. 

i. The identification of the state of the odd nucleon in the Z and N schemes does not depend on the sign of the deformation, 
.however, in the N scheme the identification shown above is difficult to obtain for both states and for both signs of the deformation. 

j. In the Z scheme the state 7/,+(2g 9/,) is obtained in the case f3 > 0, while 7/,+(2g 7/,) is obtained in the case f3 < 0. The 
states shown in the table for the N scheme refer to the case f3 > 0; in the case f3 < 0 the state of the odd nucleon is identified 
as 7/, + (li 11/,). 

k. In all three schemes the identification shown above for the state of the odd nucleon is more natural for f3 > 0, than for 
f3 < 0. 

1. For the Z and N schemes the first of the states shown above refers to f3 > 0, the second refers to f3 < 0. In the z scheme 
for f3 > 0 the coupling disruption factor is atheor = -0.61, for f3 < 0 atheor = -0.64, aexp = -0.58. 

m. In the case f3 < 0 the Z and N schemes admit the identification of the ground state as ';C(3p 1,). 
n. In all three schemes the result does not depend on the sign of the deformation. 
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TABLE II 

low of the State of the odd nucleon ow (n, l, j) 
isomeric Nucleus ll Notes 
state (ex- Z scheme I N scheme1 

! 
G scheme• 

periment) (presen: work) 

1 2 3 5 6 7 
-
Er's' 0.4 '/2- 1/2- (2{ 5/2) 1/2- (2p 3/2) 1/2- (2{ 5/2) 
Tmtso 0,3 7/2+ and 7/2- 7/2+ (1g 7/2)and 7,2+ (1g 7/2)and 7/2+ (1g '/2) b 

7/2- (1h 11 /2) 7/2- (1h ll/2) 
Hft?o 0.2 1/2- 1/2- (2{ 5/2) ';2- (2{ 5!z) 1/2-(2{ 5 /2) 

wtss 0,2 unknown n;2+ (1i 13j2) 11j2+ (1i'3/2) ? a 
Qgl89 0.1 unknown 13j2+ (1i 13j2) l3j2+ (1 jl3!z) ? a 
[rl9t•na 0.2 11/2- 11/2. (th n;2) o;2- (1h 11/2) 11 jz(1h 11/2) 
Ac22? 0.2 '/2 1/ 2+ (3s 1/2) or 1/2- (3p 3/2) 1/2- (2{ 5/2) 

1/2- (2{ 7 /2) 

u•ss ±0.3 'f•+ 1/2+ (2g 7/2l or 1/2+ (3d 5/ 2) or - c 
'/2+ ('2g 9j,) I /2+ (2g 9 /2) 

I Np2a7 ±0.2 s;2- s~z- (1h a;.) 5; 2-(1h 0/•) or 5/2- (1h 9/2l d 
5/2- (2{ 7/2) 

a. In the G scheme no isomeric state is obtained. 
b. In the case of Tm169 two close long lived states are observed experimentally. 
c. In the case of the Z and N schemes the first of the states shown refers to 

(3 > O, while the second refers to (3 < 0. In the case (3 < 0 both schemes permit 
the isomeric state to be identified as ~ (3p ~). 

d. In all three schemes the identification shown is more natural in the case 

{3 > 0. 

equal to 0.60; 0.70; 0.80 (oblate ellipsoid of revo­
lution) and 1.20; 1.25; 1.35; 1.50; 1.70; 2.00 (pro­
late ellipsoid of revolution) . For a spherically 
symmetric well the levels were calculated by the 
method described in reference 2. As shown by 
calculations, the behavior of the energy levels and 
their order do not depend strongly on the magni­
tude of the constant V0, within the investigated 
limits of variation. A more significant effect on 
the order of levels was produced by variation of 
the spin -orbit coupling constant K. In the diagram 
we show the nucleon energy level scheme in a rec­
tangular spheroidal well calculated for the values 
V0 = 42 Mev and K = 30. 

A comparison of the level scheme obtained 
here with Nilsson's1 and Gottfried's4 schemes 
shows that the behavior of the nucleon levels as a 
function of the deformation is qualitatively the 
same, but that there are certain differences of 
detail. 

The results obtained were compared with ex­
perimental values of the spins and parities of the 
ground states of non -spherical odd nuclei. As 
usual it was assumed that the ground state of such 
nuclei is determined by the state of the odd nucleon, 
with the spin I0 being equal to the component of Q 

for this nucleon along the nuclear symmetry axis, 
with the exception of the case Q = v2 when for the 
determination of ! 0 the so-called "coupling dis­
ruption factor" was computed (cf. reference 9, 

and also reference 1 ) . The experimental values 
of the spins and the parities of the ground states .of 
the nuclei were taken from the tables of Seaborg 
et al.10 The values of the parameter {3 describing 
the deviation from the spherical shape were cal­
culated from the experimentally determined values 
of the quadrupole moments .10•11 • The results of 
comparison with experiment are shown in Table I, 
which also gives a comparison of the same quan­
tities with Nilsson's1 and Gottfried's results. 

It has been established experimentally that 
many of the nuclei considered in this paper have 
low lying isomeric states. These states can be 
identified according to our scheme. The results 
of such identification are shoWn in Table II. 

From the results given in the tables it may be 
seen that the nucleon level scheme obtained in 
this paper is in good agreement with the experi­
mentally found values of the spins and parities of 
the ground states and of the low lying isomeric 
states of nonspherical odd nuclei. In our case the 
agreement is better than in Gottfried's case.4 

The present level scheme, generally speaking, 
gives as good an agreement with experiment as 
does Nilsson's scheme;1 at the same time, it is 
free of the defect of Nilsson's scheme associated 
with the fact that to make the latter agree with 
data on the ground states of a number of nuclei it 
is necessary to assume for these nuclei consider­
ably larger values of the parameter that describes 
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the deviation from the spherical shape than are 
found experimentally. 

A direct comparison of our nucleon level scheme 
with Nilsson's scheme shows that certain differ­
ences in level order existing in the spherical case, 
which are due to· the different choice of potential, 
gradually disappear as the parameter (3 (des­
cribing the deviation from spherical shape) is 
increased. In the case of large deviations from 
the spherical shape, the order of levels in both 
schemes practically coincides. This fact indi­
cates that the results of the shell model applied to 
strongly deformed nuclei are much less critical 
to the choice of the potential shape than in the 
case of spherical wells. 

One should particularly note the odd isotopes of 
the actinides for which (with the exception of Ac 227 ) 

the sign of the quadrupole moment is either not 
known or is not known sufficiently reliably, and 
consequently the same uncertainty exists with 
respect to the sign. of the parameter describing 
the deviation from the spherical shape. Neither 
our scheme nor Nilsson's scheme, contradicts the 
assumption of an oblate shape for some of these 
nuclei. 

Let us investigate the conclusions to which we 
would be led by such an assumption in the case of 
u235 • First we note that it is in agreement with 
the measurements of B. Bleaney et al., 12 who ob­
tained for u235 a negative quadrupole moment. As 
seen from Table II, in this case (i.e. for (3 < 0) 
neither our scheme nor Nilsson's scheme contra­
dicts the assumption that the isomeric state of 
u235 has. negative parity ( cf. note "c" of Table II). 
However, such an assumption would lead to changes 
in the properties of low lying levels of u235 and 
Pu239 from those adopted at present.10 •13 • Firstly, 
on the basis of data13 •14 on the multiplicity of the 
y -transitions in U235 , we would have to change the 
parities of the low lying levels of this nucleus in 
the schemes of references 10 and 13. Secondly, on 
the basis of the data on the a -decay of Pu239 , one 
should expect that since the spins of the isomeric 
state of U235 and of the ground state of Pu239 coin­
cide then, apparently, their parities also coincide. 
We should therefore ascribe Y2- to the ground 
state of Pu239 • According to both our scheme and 
Nilsson's scheme, such a possibility can be real­
ized if the Pu239 nucleus is oblate ( cf. note "m" to 
Table I). In this case, just as in the case of u235 , 

on taking into account the data16 on the multiplicity 
of the y -tr-ansitions in Pu239 one would also have 

to change the parities of the low lying levels of 
Pu239 in the schemes of references 10 and 13. How­
ever, the changes noted above would not contradict 
the available experimental data obtained from in­
vestigations of mutual transformations of the 
actinides (a detailed bibliography on this subject 
is contained in references 10 and 13 ). Thus, the 
problem of the shape of the actinides may be solved 
only by reliable measurement of the signs of their 
quadrupole moments. 
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