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The absorption (attenuation) outside the gyromagnetic resonance regions is analyzed from 
the general equation for three types of high-frequency waves. Both collisions and the spe
cific plasma-absorption mechanisms are taken into account. 

IN an earlier paper by the present author1 the where f0 is the equilibrium distribution function, 
propagation of electromagnetic waves in a plasma f is a small deviation from f0, e and m are the 
in a fixed magnetic field was subjected to a kinetic mass and charge of the electron, and E and H are 
analysis, in which the thermal motion of the elec- the self-consistent electric and magnetic fields. 
trons was taken into account. A dispersion equa- Collisions of electrons with other particles are 
tion was obtained for the propagation of the three taken into account directly by introducing the term 
kinds of characteristic waves: ordinary, extraor- vf in the first equation in (1.1), where v is the 
dinary, and plasma. However, absorption was not effective number of collisions of electrons with 
considered in reference 1. This gap has been filled other particles. We assume that f0 is Maxwell-
to some extent in papers by Sitenko, Stepanov, and ian and characterized by a temperature T 
Tkalich.2- 4 These authors, however, considered 
only particular cases. Hence it seems desirable 
to make a more general analysis, taking account 
of both collisions and the specific plasma attenua
tion mechanisms which were first treated by Lan
dau.5 This approach leads to a number of new re
sults (attenuation of the ordinary wave at low fre
quencies, a more detailed description of collisions, 
etc.). Furthermore, a number of points in the cal
culations given in references 1 - 4 are supplemented 
or refined. 

In the present work chief attention is given to 
absorption outside the gyromagnetic resonance re
gions. Absorption in these regions will be consid
ered in another paper (together with the evaluation 
of the absorption coefficients given in the formulas 
that follow) . 

1. We start from a linearized system consisting 
of the kinetic equation and the electrodynamic equa-
tions* 
at e e 
at+ vVrf- m EVv fo- me [vxH0 ] Vvf+ vf = 0, 

4"'e \ d 1 aE curl H = - - 0 j vf "v + cat , 

divE= -47te~fd"v• divH = 0, 

1 au 
cur 1 E = - car , 

(1.1) 

*It is assumed that ion motion can be neglected. In the 
presence of a fixed magnetic field H0 this assumption is jus
tified only when cu » QH, where cu is the frequency of the 
propagating wave and QH is the gyromagnetic frequency of the 
ions. 

f 0 = N (m I 2~txT)'f, exp (- mv 2 1 2xT), (1.2) 

where N is the equilibrium electron density ( N 
is independent of the coordinates because the plas
ma is uniform) and K is the Boltzmann constant. 

The system above can be solved by the method 
given by Landau. 5 In considering propagation in 
a uniform infinite medium we expand the variables 
E, H, and f in Fourier integrals in the coordi
nates (for example, E = jEkeik·rdTk) and con
sider the equations for the Fourier components 
characterized by given values of the wave vector 
k. Then we apply the operational technique, as
suming that the values of the nonequilibrium dis
tribution at the initial time fk(t = 0) are given. 
The solution shows that the asymptotic nature of 
the behavior of the field is determined by the quan
tity ePt, where p = - iw - y ( w is the frequency 
and y the damping factor). Carrying out the ap
propriate calculations it is possible to obtain the 
dispersion equation which relates p and the wave 
vector k. 

It is also of interest to consider another formu
lation of the problem: in this case, at an arbitrary 
time t the values of the nonequilibrium function 
fw (z = 0) are given in the plane z = 0 (here and 
below it is assumed that propagation is along the 
z axis; fw is a spectral component of f). 

In this formulation the problem can also be 
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solved by the Landau technique.* In this case the 
asymptotic behavior of the fields as a function of 
the coordinate z (for z > 0) is determined by 
exp (- qz + ikz), where k is the wave number 
and q is the amplitude of the absorption factor. 
In the analysis below we use the solution of the 
problem in the second formulation, although the 
corresponding formulas for the first formulation 
are also given. 

We obtain the dispersion equation in the same 
way as in reference 1. The original system of 
equations differs from that considered earlier in 
that collisions are taken into account. Further
more the boundary conditions are somewhat dif
ferent from those in reference 1, in which the 
analysis has been carried out for the first formu
lation of the problem. This new approach pro
vides results which are much more general. For 
this reason we do not repeat the entire derivation 
here. We summarize the important steps and in
dicate the assumptions which are made. 

The dispersion equation can be written in the 
form 

l
EI [A!]-1 

Ez[Ad 

Ea[A!] 

£1 [A2] 

£2 [A2]-i 

Ea [A2] 

£1 [A a] I 
£2 [A a] = 0, 
Ea[Aa]-1 

(1.3) 

where the elements of the determinant are given 
by the relations (j = 1, 2, 3) 

E [A·] _ 47teiw 
2 I - - cfk2 - w' 

(1.4) 

Here a is the angle between the wave vector k 
and the magnetic field H; k = k + iq. Further
more we assume that the condition 

i o / = I (xT /m) (k/(J.lH)2 sin2 <X I~ I, (1.5) 

is satisfied. For weakly damped waves this condi
tion is violated only when there is a weak aniso
tropy and wH « w ( wH = eH0 /me is the electron 
gyromagnetic frequency). If (1.5) is satisfied the 
quantities Ii [Ajl can be written in the form 

*In solving the problem it is necessary to expand all vari
ables in Fourier time integrals and to use the operational 
method with respect to the variable z. In the remaining cal
culations the method is the same as that used for solving the 
problem in the first formulation. 

11 [Ad=- (eN;2m) [J;t + r; 

+ 0 (J;i-+ + J-;-- J-;- J;t)], 

11 [A2] =- !2 [Ad =- (icN;2m) [J-; -Jt 

+ 0 (2 (J;t -J-;) + J~-- J;t+)], 

!2 [A2l = -(eN ;2m) [J;t + J~-

+ o (4J0 - 3 (J;t + J-;) + Jt+ + J~ -)], 

13 [Aal =- (2rceN/m) [J2 +o <- J2 + {- (Ji + J;-)> J. (1.6) 

Here 

J0 = -. / 27t'::T \ ----------,_,...------ exp (- 2'~-~T; ) dvz. V ~ ~ - iw + v + ikv2 cos a ,, 

(1. 7) 

The integrals J 1 and J 2 are obtained from J 0 

by adding the factors Vz and mv~ /27rKT respec
tively; the integrals denoted by ± are obtained by 
replacing the frequency w by w 'f WH res pee
tively in the denominator of the integrand while in 
the integrals denoted by ++ and -- the frequency 
w is replaced by w 'f 2wH. 

The integration is carried out along a contour 
C which bypasses the singularities of the inte
grands from below (in the plane of Vz ). We see 
that collisions can be taken formally into account 
by replacing - iw with - iw + v. However this 
substitution cannot be made everywhere, but only 
in integrals such as that given in (1. 7). The rela
tions in (1.6) are obtained by expanding in terms 
of the small parameter 6. In this case account 
is taken of the thermal corrections in the first 
approximation (only terms proportional to the 
temperature T are retained). 

Substituting (1.4) in (1.3) and making use of 
(1.6) we arrive at the dispersion equation 

+ 2rcJ;t J~ (- J ~ + ~ (Ji + J;-))]} 
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+k2 sin2 0(/W~· + <c2k2 (1 + cos2 ~)- 2w2) J l-i;4 

+ ll[(c2k2 sin2 ~-w2)<4J0+-J;;-

X <4J2 (Jo- Jt- J;;-) + ~ (J"J + J;,") (J;f + J;;-) 
+ J2 (J;f+ + J;;- -)) - rr (c2k2 - w2) <J2 (J;t+ + J;;- -) 

+ (Jt + J;;-) (- 2J2 + ~ (Jt + J;,))))} 

+ (iw~(2w) (c2fil. -- w2) {- (c2fi.2 sin2 1X- 2w2) (J;f + J;;-) 

+ (2c2k3 sin2 1X cos ~/u>H) (J-;-- Jt) 

- 4rr (c2fi2 eos21X- w2) J2 - o [w2 < -4J0 + 4 (Jt + J;;) 

-2(Jt+ +J;;--)) 

+c2k2 sin2 ~ (- J;f- J;;- + J;f+ + .r;;- -) 

-;- 4rr (c2k2 cos2 1X- w2)<- J 2 + ~- (Ji + J;,)) ]} 

- (c2k2 - w2)2 = 0. (1.8) 

Here w0 = .J 47Te2N/m is the characteristic fre
quency for the plasma oscillations in the isotropic 
case. In (1.8) we have retained thermal terms 
which are at least of order T; this corresponds 
to taking account of the thermal motion in the 
first approximation. 

2. Using (1.8), we now consider the absorption 
of various kinds of waves, excluding frequency re
gions close to the electron gyromagnetic frequency 
and its multiples. We shall be interested in weakly 
attenuated waves (the regions of strong attenuation 
will also be indicated in most cases). In accord
ance with these remarks we assume that the fol
lowing relations are satisfied: 

cu :?> fl V xT (m cos IX, C•) :?> v, (2.1) 
lw- WHI :?> kVxT;mcos~. lw -u)HI :?> v, 

I C•)- 2wH I:?> k V xT;m cos IX, I C•)- 2cuH I:?> v. (2.2) 

When (2.1) and (2.2) are taken into account, the 
integrals in (1. 7) can be expanded 

1 k2xT 2 J 0 = --.- - ( . )" cos 0( v-lw v-lw m 

1 -. jfii1t ( mw2 ) + k cos a V 2xT exp - 2xTk2 cos2 a ' 

J = _ xTk cos a __ w __ ex (·- mw2 ·,_ 
1 m (v- iw)2 + k2 cos2 a P 2xTk2 cos2 a ) ' 

J = 1 
2 27t (v- iw) 

The corresponding formulas for the r integrals 
can be obtained by replacing w by w - WH, for 
the r by replacing W by W + WH, for r+ by 
replacing w by w- 2wH, etc. In the terms which 
contain exponentials we replace v - iw by - iw 
and k by k (for weakly attenuated waves q « k). 
Substituting into (1.8) a relation of the type given 
in (2.3), we can obtain the dispersion equation. 
However, this equation is too unwieldy to be given 
here in general form. 

In view of the fact that q « k, we can in gen
eral neglect absorption at the outset [we assume 
that v = 0 and omit the exponential terms in (2. 3)]. 
Thus we arrive at the equation 

~ 2vRn6 -- (! - u - v + uv cos2 1X) n4 + [2 (I -- v) 2 

+ uv (I + cos2 1X) - 2u] n2 

+(I- v) (u- (I- v) 2 ] = 0. (2.4) 

Equation (2.4), which is cubic in n2 (n = ck/w is 
the index of refraction ) , describes the propagation 
of the extraordinary ( n2 = nf), ordinary ( n2 = n~), 
and plasma waves (n2 = ni). In writing this equa
tion we have used the customary notation: 
v = w~/w2 , u = wif/w2 and {32 = KT/mc2. The 
parameter {3 represents the ratio of the mean 
thermal velocity of the electrons to the velocity 
of light c. In the nonrelativistic case being con
sidered here the relation {32 « 1 always holds. 
For example, in the solar corona {32 "' 10-4 and 
in the ionosphere {32 < 10 -s. Because {32 is so 
small we need retain in (2.4) only those terms 
independent of {32 and those of order {32• We re
tain only the term that contains the highest power 
of the quantity ck, i.e., c 6k6• The approximation 
used here is adequate for studying the important 
features of the characteristic waves. For the 
quantity R in (2.4) we have 

3 sin• a . o 2 < 5- u ) R= 1_ 4u +SID" IX COS IX _I+ (i-u)2 

+ 3 (I- u) cos4 ~. (2.5) 

We shall not dwell here on a number of ques
tions related to the interpretation of Eq. (2.4) and 
associated problems; the appropriate discussion 
can be found in the review in reference 7 and in 
various papers of the author.1•8•9 In the work cited 
curves have been given to show the features of wave 
propagation in a hot magnetoacoustic plasma. We 
shall limit ourselves to several pertinent remarks. 

If we exclude from consideration the transition 
region between the extraordinary (ordinary) and 
plasma waves, 7•9 we have for waves 1 and 2 the 
well-known relation:6 
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( 1 - u- v + uv cos2 ex) n4 - [2 ( 1 - v)2 

+uv(l +cos2 cx)-2u]n2 

+(I- v) [(1- v)2 - u] = 0. (2.6) 

It is possible to speak of a pure plasma wave in 
regions of u and v for which the following con
dition is satisfied: 

I - u- v + uv cos2 ex:::::::: 0. (2. 7) 

For n~ we obtain an expression which follows 
from (2.5) (only terms with n4 and n6 are taken 
into account ) : 

n~:::::::: (I - u- v + uv cos2 oc)/~2vR. (2.8) 

Equation (2.8) does not hold at very small values 
of the numerator, in which case it is necessary 
to take account of n2 terms, and at large values 
of the numerator, in which case {32n2 ...., 1. In the 
latter case strong absorption may occur. An 
analysis of (2.4) shows that there are values of 
the parameters u and v and the angle a for 
which certain roots may be negative (n2 < 0); 
in the region defined by the condition in (2. 7), 
certain roots can even be complex. Inasmuch as 

dissipation processes have been neglected in mak
ing the transition to (2.4) the suppression of the 
field indicates that propagation is impossible. The 
situation here is similar to that which obtains 
above points of reflection for low-frequency radio 
waves incident on the ionosphere from below. In 
such cases there are frequency regions for which 
propagation is impossible. If the thermal motion 
in the plasma is taken into account the width of 
the forbidden zone can be smaller than the fre
quency w itself. The existence of these Q.arrow 
gaps in the frequency spectrum in gyromagnetic 
resonance regions for quasi-transverse propaga
tion (a ~ 1r/2) was first noted by Gross .10 

We now consider the absorption. In this case, 
in the general dispersion equation, obtained by 
substituting (2.3) in (1.8), we retain the terms 
that depend on the collision frequency v and 
exponential terms [cf. (2.3)]. Because the con
ditions in (2.1) and (2.2) are satisfied, the result
ing relation for the absorption factor can be writ
ten as a sum of two terms: one depends on colli
sions and the other takes account of the absorption 
effect due to remote interactions. From(2.1), (2.2), 
and (2.4) we have (we recall that k = k + iq) 

{ [ sin2 a. cos2 a. (u- 9) 12u sin' a. J . 
=S -2~2vn6 _3cos4 cx- (1 -u>s +3cos4cx+ 1 _ 4u +n4 (u-3+2o)+n-(2v2--8v-2u+6) 

- 3v2 + 6v + u -3} + v{(u -1)cos2 ocn4 +(I -u-v) (1 + cos2 cx)n2 

+u-(l-v)2}--./~ 1 ex (- 1 \+v(u- 1){sin2 rzn' +[v(1+cos2rz + sin•a.) V 2 (~n cos 11.)'1 P 2~2n2 cos2 a. ) 2u _ 2 1 + V u 

v• (' 2 + Vu ) sin• a. -v- 2} vit 1 1 (1- Yul 2 ) { sin2 a.n• 
+1+Vu-v 1+Vu +I +2Ucos2 a. (I- u) 2 ~ncosa. exp \- 2~2n2 cos2 a. +v(u-1) 2u 

_ 0 ('2- V~) __L 1 + _ sin2 a. (I + ~r;;>'} ~ /' rr2=: -,-------ex { __ (1 + Vul2 ) 

1 _ V u ' 2u cos2 a. r V pn cos a. P \ 2;3 2n2 c->s' a. ' (2.9) 

where s = v/w. 
We now consider some particular cases. Al

though the specific absorption [which is character
ized by the exponential terms in (2.9)] is small 
(in accordance with our original assumptions), it 
is of interest when we are concerned with small 
values of q, i.e., when the numbers in the expo-

-------------------------------------
nential are not very large in absolute value. For 
example, in the factor exp (- ~{32n2 cos2 a) the 
quantity ({:Jn cos a) cannot be too small. Since 
{:Jn cos a ~ ../ KT/m/vph (Vph = c/n is the phase 
velocity), when {32 « 1 attenuation due to this 
term can have a noticeable effect if the wave is 
a slow wave, i.e., when Vph « c or 
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(2.10) 

The factor exp [- ( 1- -fU )2/2{32n2 cos2 a] in 
Eq. (2.9) may become large at large values of n2 

and near the gyromagnetic frequency wH when 
u - 1 (a similar picture obtains close to 2wH 
and so on). Thus the effects of specific absorption 
can be discussed in two cases which sometimes 
overlap: slow waves or frequencies near the gyro
magnetic resonance frequencies. We here con
sider the case in which the condition in (2.10) is 
satisfied. However, we have left terms with the 
indicated exponential factor in (2.9) and below, 
since they may make a considerable contribution 
when the frequency of the wave is substantially 
(say, several percent) different from the gyro
magnetic frequency wH. In addition, we consider 
the particular case in which the condition in (2.10) 
is satisfied precisely in the region of the first 
gyromagnetic resonance. 

Evenifwegoto n2 »1 [(2.10)], itdoesnot 
mean that we must always neglect terms with small 
powers of n2 in (2.9). 

Such a procedure would deprive us of the possi
bility of calculating the absorption of the ordinary 
wave at low frequencies when (as for plasma 
waves) the case n2 » 1 is possible. A simple 
analysis indicates that in (2.9) the quantity propor
tional to {32n6 in the first term, which reflects the 
contribution of collisions, can be omitted. Then, 
making several omissions which are permissible 
when (2.10) is satisfied, we find 

(q/k) [- 6[:J2vRn6 + 4 (I - u- v + uv cos2 a) n4 ] 

= s [ (u + 2v - 3) n4 + 2v2n2 ] + v [ ( u - I) cos2 a 

+ (1- u- v) (I+ cos2 a) n2 - v2I"" l}i 1 
V 2 (~ncos a) 3 

xe (' 1 \ -./nv(u-1)sin2 an4 
xp - 2[32n2 cos2 a )+ V 8 u~n cos a 

X {exp(- 2(~2~~~):) +exp(- 2(~2~~~):)}. (2.11) 

For plasma waves we must take account of the 
condition in (2. 7); in other words, as follows from 
(2.8) and the last formula in (2.12), the absorption 
need not necessarily be weak. Furthermore, were 
we to have v » 1, the requirement for the propa
gation of plasma waves (2. 7) would lead precisely to 
u cos2 a = 1. When u < 1, the last equality is not 
satisfied at all. When u » 1 the angle a must 
have a definite value, close to a = 1r/2. Hence the 
case u cos2 a = 1 (for v » 1) is a special one 
and will not be considered here. Assuming that v 
is not large, we can neglect in (2.11) all n2 terms 

and terms that do not contain n2• Finally, taking 
account of (2.4) and (2.7), we have 

11(1-u) {s (-, 2uvsin°a) 
q3 = 1-u- v + uv cos" a 2 _ 1 + (1- tl);-

+ ex_ (- __ (!_±Jfiil2 
) J ]1. 

P 2~"n2 cos2 a J · (2.12) 

Strictly speaking this relation holds only for 
weak attenuation ( q « k); however, it can also be 
used to obtain qualitative results when the absorp
tion is strong. It is apparent from Eq. (2.12) that 
when {3n cos a ~ 1 the absorption is not weak 
( q ~ k). For propagation a close to 1r/2, the 
quantity {3n cos a may be small even for very 
slow waves; however, in these cases it does not 
follow that we can neglect (1.5), since violation of 
this condition means strong absorption when u 
.<:. 1. It should be noted that in (2.12) the term con
taining the factor exp [- ( 1 +-Ill )2 /2[32n2 cos2 a] 
is not important and is given here to show the con
tribution due to such terms. From Eq. (2.12) it 
can be shown that the absorption of plasma waves 
is especially strong when u R:: 1. It should be noted 
however, from Eq. (2.8), that when u R:: 1, for val
ues of a which are not close to 0 or 1r/2, we 
have n~ =- (1 -u)2/4{32 cos2 a; obviously, in this 
region the propagation of Wave 3 generally is im
possible, because n~ < 0 for both u > 1 and 
u<l. 

We now derive the corresponding results, using 
the first formulation of the problem of propagation 
of electromagnetic waves in a plasma (cf. Sec. 1); 
the field falls off asymptotically as e -yt, where 
'Y is the damping factor. Calculations, as well as 
general considerations, yield the following formula 
for the case of weak absorption 

1 = qdwjdk. (2.13) 

In the isotropic case this relation can be written 
'Y = gU gp, where U gp is the group velocity.* In 
the anisotropic case dw/dk is equal to the pro
jection of the group velocity in the direction of the 
wave vector k. Using (2. 7) and (2.8) (neglecting 
certain terms), we find for Wave 3 

*An elementary derivation of (2.13) can be found in refer
ence 11. Although there is no question that (2.13) holds outside 
the gyromagnetic-resonance regions, it may be violated inside 
these regions. 
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dw;dk = c (1- u- v + uv cos2 a.)/n (2- u- v) 

and, from ( 2. 7) and ( 2 .13) then obtain a formula 
for the damping factor of the plasma wave 

= ( 1 + uv sin2 a )-1 {!.... (1 + 2uv sin2 a ) 
Ys (1- u)2 2 (1- u)2 

sin2 a [ ( (1 - Vu) 2 ) + 2~n cos au exp - "2"'"~"2n-,;-2 -'co-s2""'a-

(2.14) 

The part of this expression which reflects the con
tribution of specific attenuation effects coincides 
with the results obtained by Sitenko and Stepanov. 2 

However, the collision term differs from that 
derived in reference 4. In particular, from Eq. 
(36) of reference 4 it follows that y - 0 when 
u -1 and a ¢ 0, whereas in our case y- v 
under the same conditions. In an earlier paper 
by the author1 a formula analogous to (2.14) was 
given without proof, but the coefficient similar to 
that in front of the curly brackets of (2.14) was 
given incorrectly. 

In analogy with the spatial absorption, the at
tenuation is not necessarily weak (y"' w) when 
f3n cos a "' 1. The other remarks made in con
nection with (2.12) also apply to (2.14). 

We now consider the attenuation of ordinary 
waves at relatively low frequency; in particular 
we assume that 

These inequalities can be written in the form 

v ~ I, u cos2a. ~ 1, v ~ u. (2.15) 

The third of these conditions is not necessarily a 
strong one. Investigations of the ordinary waves 
under the conditions given in (2.15) are of interest 
basically in connection with the problem of propa
gation of whistlers .12 The propagation is found to 
be quasi-longitudinal6 and, from Eq. (2.6), leads 
to the equation* 

(2.16) 

The second term is smaller than the others in ab
solute magnitude, so that as a first approximation 
we have 

(2.17) 

which is used as a basis for the generally accepted 

*The effect of the thermal corrections on propagation is not 
very important here; in any case, it need not be taken into ac
count in calculating absorption. 

analysis of the propagation of whistlers.12 From 
Eqs. (2.15) and (2.17) it follows that n~ » 1. Under 
these same conditions we have nt = -v//U cos a, 
and propagation is impossible for the extraordinary 
wave.* 

In calculating the absorption coefficient we can, 
by virtue of the condition wH » w, omit terms 
that contain the parameter u in the exponent. We 
are left with the basic terms in Eq. (2.11); after 
some simple transformations, which take account 
of Eqs. (2.15)- (2.17), we have 

= _f!__ J s vr ~ _sin' a . ex. (- ... , _,1 .. \l . 
q2 2 Yucosa l + ::i (.3n cos x)" p .!.hi" co.>" a )J 

(2.18) 

In this case, because wH cos a » w the absorption 
is weak even when {3n cos a "' 1 and s "' 1. The 
specific absorption described by (2.18) may appar
ently be realized for propagation of whistlers in 
the upper layers of the atmosphere in periods of 
intense solar corpuscular disturbance. 13 If we neg
lect collisions, (2.18) coincides with the results 
obtained by Shafranov14 by a completely different 
method [cf. the appendix to reference 14, Eq. (21)]. 
In the latter paper the absorption was calculated 
by considering the intensity of the Cerenkov radia
tion of electrons in a plasma and applying the Kir
choff formula. Thus, whereas the ordinary absorp
tion due to collisions of electrons with ions is due 
to bremsstrahlung of moving electrons in the ion 
field, 6 the specific absorption is due to Cerenkov 
radiation, 14 and also to "magnetic bremsstrahlung" 
losses. 

We now obtain a formula for the damping of the 
ordinary wave. Using (2.13) and a result which 
follows from (2.17), dw/dk = 2vph• we find the 
attenuation y to be 

v /-:;;- sin2 a · 1 \ 
12 = v u-cos a- + (o) l 8u -~ 3n3 cos'a cxp ~-- 2/32112 COS2 a ) ' 

(2.19) 

In conclusion we consider one more example, 
which arises in the propagation of slow waves. It 
should actually be related to gyromagnetic reso
nance although here, as in the preceding examples, 
n2 » 1. At the outset we consider purely longitudi
nal propagation, with a = 0. The attenuation of the 
plasma waves can then be found from (2.12) and 
(2.14), with the latter formula becoming the Landau 
expression.5 However, when a= 0, the extraor
dinary wave can also be slow when w is close to 

*It should be noted that when a= 0 the wave described by 
(2. 7) should be called the extraordinary wave. The case a= 0 
is exceptional and for any small values a i= 0 this wave be
comes the ordinary wave. 
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WH. Starting from our general relations, we find 
the corresponding formulas for absorption ( atten
uation) in this case. From (2.6) with a = 0, neg
lecting the effect of thermal corrections on propa
gation, we have for Wave 1 

ni =I- vi(l- Vu) ~ V/(Vu- 1). (2.20) 

The approximate equality refers to the case u :::::l 1. 
We assume further that v is not very large, taking 
v ~ 1. Then, we are justified in assuming (neglect
ing difference terms of the type u - 1 ) that u = 1. 
The attenuation of Wave 1 for a == 0 is determined 
by collisions and the term with the factor 
exp (- ( 1- v'u )2/2{32n2 ]. From Eq. (2.9) with 
a = 0, we have after certain simplifications based 
on (2.20) 

ql=k{u~ 1 +<Vu-1) Jli~~~ exp (- (l~~p)• )}. 

(2.21) 

When s = 0 this formula becomes the correspond
ing formula given by Shafranov14 (cf. also reference 
15). Using Eq. (2.13) it is easy to calculate the 
value of the damping factor y. In the present case 
dw/dk = 2cn (.Jll -1)2/v and 

r = v + (Yru-1) 2 Vi ~: exp (- (i ;"~u)2 
) • (2.22) 

As Shafranov has emphasized, 14 damping of the 
kind being considered here may be especially im
portant at large values of v. In this case the con
ditions which determine the degree to which the 
frequency w approaches wH may not be espe
cially stringent, so that it may be necessary to 
introduce corrections in the formulas which have 
been derived. It is obvious that absorption of this 
kind also obtains for small values of the angle a; 
these are determined by the condition 11 - v I 
» v sin2 a/11-..fll I with the supplementary re
quirement vI ( ..fU - 1 ) » 1. However, when a "'0 
it is necessary to take account of attenuation of the 
ordinary wave even for very small values of a. 
The situation is to a considerable degree analogous 
to that which obtains for the low-frequency ordi
nary waves considered earlier, although in the 

latter the specific absorption is due to the non
resonance factor exp (- if32n2 cos2 a), whereas 
in the present case it is due to the resonance fac
tor exp [- ( 1- ..fU )2/2{32n2 cos2 a]. 

The author is indebted to Prof. V. L. Ginzburg 
for his continued interest in this work. 
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Vacuum Tubes (see Methods and Instruments) 
Viscosity (see Liquids) 
Wave Mechanics (see Quantum Mechanics) 
Work Function (see Electrical Properties) 
X-rays 

Anomalous Heat Capacity and Nuclear Resonance in 
Crystalline Hydrogen in Connection with New Data 
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(e). Ferromagnetic weak solid solutions. By way of an example, we consider the system Fe-Me with 
A2 lattice, where Me = Ti, V, Cr, Mn, Co, and Ni. For these the variation of the moment m with con
centration c is 

'dmjdc = (Nd)Me :t= 0.642 {8 (2.478- RMel +6J2.861- RMe J :t= [ 8 (2.478- Rpe) + 6 (2.861- RFe)]'• 

where the signs - and+ pertain respectively to ferromagnetic and paramagnetic Me when in front of 
the curly brackets, and to metals of class 1 and 2 when in front of the square brackets. The first term 
and the square brackets are considered only for ferromagnetic Me. We then have dm/dc = -3 (-3.3) for 
Ti, -2.6 (-2.2) for V, -2.2 (-2.2) for Cr, -2 (-2) for Mn, 0.7 (0.6) for Ni, and 1.2 (1.2) for Co; the paren
theses contain the experimental values. 
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