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Resonance scattering of y quanta from Mg24 nuclei, with excitation of the first two levels 
at 1.37 and 4.23 Mev has been investigated. Analysis of the correlation formula enables 
one to draw conclusions concerning the character of the excitation of the nucleus. 

1. Until recently the problem of resonance scat- symmetry axis K = 0, or as a single-particle level 
tering of y quanta by nuclei was not amenable to resulting from the perturbed motion of a single par-
experimental investigation because of the fact that ticle in the field of the deformed nucleus. For a 
usually D..= hv1 -hv2 > r, where v1 and v2 are collective level, the reduced probability of transi-
the frequencies of the absorbed and emitted quanta, tion from the excited state to the ground state is 7 

and r is the natural width of the excited level. As 
a result, the emission line hv2 and the absorption 
line hv1 hardly overlap, thus making it difficult to 
establish the occurrence of the resonance scatter
ing. However this difficulty has now been essen
tially overcome, and there are many papers de
voted to resonance scattering by various nuc lei. 1- 4 

The reason for the interest in this phenomenon 
is that by studying it one can not only determine 
some of the quantum numbers of excited nuclear 
states, but one can also decide whether the excita
tion occurs via a collective or a single-particle 
mechanism, since in many cases, as we shall show 
later, the expressions for the correlation function 
depend essentially on the assumed nuclear model. 

2. The present paper gives a theoretical treat
ment of resonance scattering of y quanta by Mg24, 

with excitation of the 2+ levels at 1.37 and 4.23 
Mev (cf. Fig. 1). 
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Metzger2 and Burgov and Terekhov3 used the 
method of resonance scattering to determine ex
perimentally the width of the 2+ level at 1.37 Mev. 
Metzger gives a lower limit of ry > 1.6 X 10-4 ev, 
while reference 3 gives a definite value of ry = 3.8 
x 10-4 ev. Assuming that the Mg24 nucleus is highly 
deformed,5•6 the 2+ level at 1.37 Mev can be treated 
either as a collective (rotational) level with angu
lar momentum I = 2 and projection on the nuclear 

(1) 

where R0 is the equilibrium radius of the sphere, 
and {3 is the equilibrium value of the nuclear de
formation parameter. Formula (1) is usually used 
for determining the parameter {3 from the ob
served value of B. Setting the radius R0 = 1.45 A 1/3 

x 10-13 em, one finds for Mg24 the value {3 = 0.45. 
For the case of single-particle excitation, the 

expression for the transition probability to the 
ground state was given by Nilsson.8 It is obvious 
that in Mg24 the transition from the 2 + level at 
1.37 Mev to the ground state occurs mainly by 
emission of E2 quanta. The corresponding level 
width is8 

r = (4~t I 751i)(w I c)5 B (£2), (2) 

B (£2) = (5e IV 4~t)2 1 LJ ~LJ Az,, n-aA;,n'-a Oo,n• 
l 1 l, a 

B X l,l, 

-v (211 + 1) (212+1) 

X (21100 1211120) (2110 Q- a J21112Q- a) j 2 . (3) 

Here Z1 and l2 are the orbital angular momenta 
of the nucleon in the ground and excited states, 
having the values 0 and 2 ( N = 2 shell ) ; Q is the 
projection of the angular momentum of the nucleon 
on the nuclear symmetry axis; a is the spin: 
Az1,n-a and Az2,n' -a are the diagonalization co

efficients corresponding to the single-particle 
functions in the ground and first excited states ;8 

(4) 

where R2z1 and R2z2 are oscillator wave functions 
for the nucleon, which depend only on the parameter 
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r~ which determines the level spacing correspond
ing to the spherical oscillator potential 

(5) 

The expression for B (E2) depends on the param
eters o = {3/0.95 and r 0. 

The nucleons in the N = 2 shell can be in states 
with Q = ± 1/ 2 , ±%, and ±%; there are three dif
ferent states for Q = ± 1/ 2 , two for Q = ±% , and 
one for Q = ±% . The spacing of the levels depends 
on the value of nw and the deformation parameter 
o. If we require that the level spacing agree with 
experiment, we can determine the parameter o 
from the Nilsson model. In the Mg24 nucleus the 
±% and ±% levels are filled if o > 0, while the 
±% and ±% levels are filled if o < 0. The se
lection rules permit only 1,12 - 1,12 and % - % 
transitions in Mg24 • For the values of the param
eter o we get o = ± 0.2 from the %-% tran
sition, and o = 0 from the % - % transition, 
Setting ro = 1.9 X 10-13 em in (5). 

a llO•r theor' ev \ to•rexp' ev 

0.2 63 3.8[4] 

-0.2 0.8 
0.3 11.8 >1.6[3] 

The values of the width of the excited level at 
1.37 Mev are given in the table. We see that the 
value o = -0.2 must be discarded, since the re
sulting level width contradicts the experimental 
value. The theoretical value of the width for o 
= 0.2 is considerably greater than the experimental 
value. But if we take a somewhat greater value for 
o, say 0.3, the theoretical value of the width r is 
much closer to experiment. Of course, the excita
tion energy is then different from the experimental 
value, but not very much, since with o = 0.3 we 
get 1. 72 Mev for the excitation energy. Unfortu
nately, in Nilsson's paper the diagonalization co
efficients are tabulated only up to o = 0.3. It is 
to be expected that for a somewhat greater value 
of o the agreement with experiment will be more 
satisfactory with respect to both the width of the 
level and the value of the energy of excitation. As 
for the width of the excited level found from the 
collective model, nothing definite can be said since 
no satisfactory way has yet been found for deter
mining the deformation parameter {3 independently 
of formula (1). 

The angular distribution of the scattered y 
quanta is 

I (0) = I (0) {I - 3 cos2 fJ + 2 cos4 fJ}. (6) 

As was to be expected, the angular distribution does 
not depend on the model, since we are dealing with 
a pure E2 transition. 

3. We can get a different result concerning the 
dependence of the angular distribution on the nu
clear model if we consider the resonance scatter
ing of y quanta by Mg24 with excitation of the 
second 2+ level at 4.23 Mev. Actually y transi
tions can occur from this level to the ground state 
as well as to the first excited 2 + level. For the 
transition to the ground state, the angular distribu
tion of the y quanta will not depend on the model 
since this transition is pure E2. For the transi
tion to the first 2+ level, both E2 and M1 transi
tions are possible. If the probabilities of these 
transitions are of the same order of magnitude, 
then because of the interference term the correla
tion function will now depend essentially on the 
assumed nuclear model, and a comparison with 
experiment will enable us to determine the validity 
of the models. One must keep in mind that the 
probabilities of E2 transitions to the ground state 
and first excited state should be of the same order 
of magnitude. Of course the nucleus in the first 
excited state later makes a transition to the ground 
state, but this can give nothing new concerning the 
dependence of the angular distribution on the as
sumed nuclear model, since this transition is a 
pure E2. For this reason we shall in what follows 
regard the first excited state as the final state. To 
obtain the correlation between the quanta absorbed 
and emitted in the transition 2 - 1, we shall start 
from the two models: collective and single-particle. 
However before doing this we must check whether 
the conditions 

w [£2 (2 -+I)]~ w [£2 (2 ->- 0)], 

W [MI (2 ->I)]~ W [£2 (2 ->I)], 

are satisfied, where the numbers 0, 1, and 2 de
note the ground state, the first and the second ex
citud states, respectively. 

Since both excited levels have the same angular 
momentum 2+, we can use the assumption of Davy
dov and Filippov9•10 that the nucleus can be repre
sented as an asymmetric top, which has rotational 
levels of different energies but with the same total 
angular momentum. The authors cited have found 
the relation between these levels as a function of 
asymmetry parameter y. Since the Mg24 nucleus 
is highly deformed, we apply the model of Davydov 
and Filippov to it, and calculate the probabilities 
of the radiative transitions for the same value of 
the asymmetry parameter which gives the observed 
value for the ratio of the energies of the levels 
(y = 22°). We find 
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W [£2 (2---+ 1 )1 1 W [£2 (2 -> O)J- 1, 

W [M1 (2--> 1)]1W [£2(2---+ 1)1 -10-2• (7) 

We see that the probability of the magnetic tran
sition in this case is very small compared to the 
probability of the E2 transit:k>n. The correlation 
function will therefore not depend on the nuclear 
model, and will be given by formula (6). If how
ever we treat the 2+ levels at 4.23 and 1.37 Mev 
as single particle levels according to the Nilsson 
model, then as is easily shown we get for the ratio 
of the radiative transition probabilities 

W [£2 (2---+ 1)1 I W [£2 (2 -> 0)] 

- W [M1 (2 -> 1)] I W [£2 (2 -> 1)1 -1. (8) 

From this it follows that the transition 2 - 1 
is not a pure E2 transition, and that the correla
tion function on this model will differ from formula 
(6). To find the function we use the general corre
lation formula 

pp' M,M, 

X l:zJ (MoloKo I flo [IIM1K1) (/1M1Kt I fll! /2M2K2) 12
, 

~ ~) 

where ( 10M0Ko I H0 I 11 M1 K1 ) is the matrix element 
for E2 absorption of the y quantum with transi
tion of the nucleus from the ~round state to the 2+ 
state at 4.23 Mev; (11M1Ktl H1 I 12M2K2 ) is the 
matrix element for the transition 2 -1, in which 
(E2 + Ml) quanta are emitted; (10M0K0 ), (11M1Kt), 
and (I2M2K2 ) are the values of the total angular 
momentum of the nucleus, its projection on a space
fixed axis and its projection on the nuclear symme
try axis, in the initial, intermediate, and final states, 
respectively. The operators for absorption and 
emission of y quanta have the well-known form12 

flo=- V rr/15 ep' (kr) 2 Y 2p•, 

2 

i-ll=-v ;rl!5ep ~ DX1p(n .. ) (kr) 2Y2M- (rreh ,' M,;c) v:r 
M=--2 

X ~ D~p (ny) f1 (kr) (11 - p. p. -1-M/ Ill M) Y1, ,,+,\J"IJ-1,, 

~ p~ 

where fL ( kr) are spherical Bessel functions, 
multiplied by ( 211' )1/ 2, and nfnm' (n) is the trans
formation matrix. 

For the wave function of the nuclear system in 
the initial, intermediate, and final states, we have7•8 

'¥ ooo = V 1!8~t 2X , ' nonu' 

(11) 

where Qi (i = 0, 1, 2) is the projection on the 

nuclear symmetry axis of the angular momentum 
of the nucleon excited in the N = 2 shell, in the 
initial, intermediate, and final states, nf is the 
sum of the projections of the angular momenta of 
the other nucleons in the shell. 

In addition we have 

(12) 

where 

is the wave function of the nucleon in the undeformed 

nucleus,8 A},n·-a-· are the diagonalization coeffi-
1 1 1 

ficients, x ( ui) are spin functions, XQ· is the 
1 

wave function of the other nucleons in the N = 2 
shell. 

If we use these expressions, we find, after quite 
involved calculations, 

I (ny)- ~ ~ 1-%- C2 (/?20R0) 2 VS/3 N (iloQ1) 
pp' M,M, 

X { ~ B (20m1M 2il1il2) [0 (20mlpM2) D~·-M,. p (ny) 
M, 

+ C (20m1pm2) D;'-M,, P (ny)] 

-1- ~B(22m1p'M2il1 .Q2 ) [0 t22m1 pM2)D~'-M,, p(ny) 
m, 

+ C (22m1pM2) D~·-M,, P (ny)]} I\ 

where 

1,+2 

(13) 

B (l1l2mp' M2.Q1.Qa) = ~ (ll+i) (ll2m1p' fll2Lm1 + p') 
L=/1-2 

X (l22m1 -1- p'- M2, M2fl~2Lml -1- p') 

X 2: [A'i,o,-o,, At,o,-o1 (!12£~1- cr12j/12U.21- 0"1 -1- 2) 
a' 

X (l 22.Q2 - cr10 fl 22Lf.22 - cr1) + A7,or"• AL-n,-9, 

X (l12-Q1- cr1, - 2fl12L- il1- cr1- 2) 

X (l22Q2 - cr10 fl22L.Q2- cr1)], 

O (l l , M . _ enk2, 1 
1 2m1p 2) -- 2 V 2 MPc V 212 + 1 

1 

X ~ (11- t-J·t-J· -1- p'- M 2 f 11lp'- M){(l1111l1- (J.[l1ll1 
IL=-1 
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X (1l1- lp. + p'- M2m1- p .. jll1- ll2m1 

+ p'- M2) T2 (l1l2)}, 

T(lll2) = V(ll +I) (Ill+ 100 /Ill+ 1!20) [(l2 -ll- 2) 

X U1 + la + 3) IDlo (l1l2) + 2Mpek21R2h-_1IDl2 (l1l2)], 

T2 (l1l2) =VI; (Ill- 100 /ll1-ll20) [9Jlo (l1l2) 

+2Mpek21R2h--19Jl2 (l1l2)J, 

-.1 2lt + 1 C (l1l 2m1M1M2) =- V 3 (212 + i) (l12m1M1- M2/l12l2ml 

+ M1- M2) (kR)2 IDl2 (l1l2)· 

In these formulas Mp is the proton mass and c 
is the velocity of light; k20 and k21 are the wave 
numbers of the 'Y quanta emitted in the transitions 
2 - 0 and 2 - 1, respectively, while the symbols 
9JlL (l1Z2 ) denote radial integrals, i.e. 

IDlL (l1l2)= ~R21, (r I R)LR21, r 2dr. 

From the selection rules we have I n1 - n0 I 
= 2, I n1 - n2 1 = 2. Thus in the absorption of an 
E2 quantum we will have the transitions V2 -% , 
Y2--%, %--%, if o > 0. If we require that 
the calculate.d level spacing agree with the experi
mental value, (4.23 Mev), we will have only the 
V2 - -% transition. In this case the theoretical 
values are ~E = 3.8 Mev for o = 0.3, and ~E 
= 2.9 Mev for o = 0.2, (The lack of tables of the 
diagonalization coefficients for o > 0.3 prevents 
us from getting closer to the experimental value 
~E = 4.23 Mev.) In this case, in the transition 
2- 1 to the final state only the single-particle 
transition -% - V2 will occur. If we substitute 
the computed values of k20 and k21 in formula 
(13), we finally get the correlation function 

I (fl)- ( 1 +A cos 0 + B cos2 8 + C cos3 0 + D cos' 8), (14) 

where () is the angle between the absorbed and 
emitted 'Y quanta. For o = 0.3, the values of the 
coefficients in (14) are 

A=O.ll, B=-1.5, C=-0.3, D=0.7. 

The correlation function given by formula (14) 
is not symmetric around 90° (cf. Fig. 2), whereas 
in the case of collective excitation the correspond-

I l(IJ) 
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FIG. 2 

ing curve determined from (6) is symmetric. Thus 
the experimental investigation of the correlation of 
'Y quanta in the excitation of Mg24 with an energy 
of 4.23 Mev would enable us to draw definite con
clusions concerning the nature of the excitation of 
this nucleus. Unfortunately, so far as we know, 
no one has as yet done such experiments. 

In conclusion, it is our pleasant duty to express 
our thanks to V. I. Mamasakhlisov for his direction 
and continued interest in our work. 
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