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We consider copper complexes Cu2+y6 for which there are, in contradistinction to other 
paramagnetic complexes, in first approximation an infinite number of geometries within 
a certain manifold corresponding to the minimum energy, instead of one well-defined 
geometry. Using crystal field theory we establish the connection between the geometry 
of the complex and the electron density distribution of the Cu2+ ion. "Geometrical degen­
eracy" leads to the result that the latter may experience finite (permanent) distortions; 
it is shown that the changes in the "crystalline" field corresponding to these distortions 
should lead to oscillations of the electron cloud of the Cu2+ ion relative to the nucleus. 
We also consider the influence of the interactions which lead to a partial stabilization of 
the complex. It is shown that even when these interactions are taken into account the elec­
tron cloud continues to oscillate but at a lower frequency, and the frequency depends on the 
mass of the corner atoms. We have considered the influence of the effect considered on the 
hyperfine structure and g -factors in free complexes. 

1. INTRODUCTION 

IT is well established that in copper salts in which 
the crystalline electrical field at the position of the 
Cu2 + ion has a symmetry higher than a tetragonal 
one1 and, as an exception, in copper Tutton salts2 

where the crystalline field is tetragonal, the mag­
nitudes of the g -factors and of the hyperfine­
structure (hfs) constants are temperature depend­
ent: they are strongly anisotropic at low tempera­
tures and become isotropic at high temperatures, 
while the hfs constant is considerably decreased 
at high temperatures. Aqueous solutions of copper 
salts have a peculiar behavior. 

The behavior of a Cu2+ ion in salts with a tri­
gonal (or higher) symmetry was explained by the 
dynamic character of the Jahn-Teller effect which 
occurs in these salts. 3 The behavior of a copper 
ion in Tutton salts2 and also in aqueous solutions4•5 

has not yet been adequately explained. 
There are grounds for assuming that the Jahn­

Teller effect is also responsible for the decrease 
and isotropy of the hfs constant in aqueous solu­
tions of copper salts (and, apparently, as an ex­
ception, in Tutton salts). This is indicated by the 
fact that both in a free Cu2 .. Y6 complex and also 
in the complex situated in a force field with tri­
gonal symmetry, the ground state of the Cu2+ ion 
is two-fold degenerate, if the Jahn-Teller effect 
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is not taken into account, while in both cases the 
degeneracy is lifted thanks to the Jahn-Teller effect. 
Since the Jahn-Teller effect in Cu2+Y6 complexes 
in a trigonal field has a dynamic character, it fol­
lows from the above analogy that it must also have 
a dynamic character in free complexes. 

It is the aim of the present paper to consider 
from the same point of view all peculiarities of 
paramagnetic resonance of copper ions which, 
according to one consideration or another, may 
be ascribed to the dynamical character of the nor­
mal Jahn-Teller effect. 

General considerations about the nature of the 
effect are given in Sec. 2. A theory of the phenome­
non in free (not fixed in a lattice) Cu2+Y6 com­
plexes is offered in Sec. 3. A general discussion 
is given in Sec. 4 of the influence of the effect on 
the paramagnetic resonance of Cu2+ in complexes 
with different corner atoms Y. 

2. THE JAHN-TELLER EFFECT IN FREE 
COPPER COMPLEXES 

The Jahn-Teller theorem6 applied to XY6 com­
plexes proves that the octahedral configuration 
formed by such complexes is unstable, if the atom 
(ion) X is in a degenerate state. 

The Hamiltonian leading to a Jahn-Teller effect 
can be written in the form 1 •8 
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z 
a 

(1) 

The term :kcub is the energy of the ion in a crys­
talline field of cubic symmetry and is considered 
as the unperturbed Hamiltonian; the second and 
third terms are perturbations. For our purpose 
it is sufficient to consider only the influence of the 
perturbation on the lowest orbital cubic doublet 
(for the sake of brevity we indicate by this term 
the lowest two-fold degenerate orbital state of the 
Cu2+ in the field of cubic symmetry). 

The Jahn-Teller effect as such is connected 
with the term linear in Q2 and Q3, where 

are operators with matrix elements 

<~11 v~ 1 ~1> =- <~21 v~! ~2> 

= <~11V~ I ~2> = <~2! V2l ~1> =-a, 

and r ( x, y, z ) is the radius vector taken from the 
nucleus to the electron of the incomplete shell of 
the Cu2+ ion. If the corner atoms Y are electric 
dipoles with moment "ji, C = e'JL/R5 where e' is 
the electron charge and R the equilibrium distance 
between Cu2+ and Y in a regular octahedral com­
plex. 

For our further calculations we put Q3 = p cos e, 
Q2 = p sin e. The notation of the variables Q2 and 
Qa in (1) is the same as the notation for the two­
fold degenerate vibrational coordinates of a regu­
lar octahedral complex XY 6 (of the type E g), al­
though they characterize in the given case static 
distortions of the complex. These variables can 
be expressed as follows in terms of displacements 
in a Cartesian system of coordinates (see Fig. 1 ): 

Qa = [za -z"-+ (xl- X,1 + Y2- Ys)]/V3, 

Q2 = + (x1- X4- Y2 + Ys). 

Expression (1) determines the energy of the 
Cu2+ ion as a function of the geometrical param­
eters Q2 and Q3 (or p and e ) . On the other 
hand, the energy of the Cu2+Y6 "molecule" as a 
function of the same variables is equal to* 

*Since we are interested in the connection between the 
geometry of the complex and the electron density distribution 
we have omitted from Eq. (la) third order displacement terms 
caused by the interaction between the corner atoms Y and the 
effective charge of the Cu2+ nucleus. 

FIG. 1. Static distortions of an octahedral complex 
of symmetry Q, and Q2 (a: for (} = 0, b: for (} = 11/2, 
c: for (} = 11, d: for (} = 311/2). •- initial geometry, 

o- structure arising due to the static Jahn-Teller 
effect 

(1a) 

where U0 is the potential energy of the Cu2+y6 

"molecule" when it has the symmetry of a regular 
octahedron. 

In order to find the stable geometry it is nec­
essary first to diagonalize (1a) and then to impose 
a minimum condition.7 We get (see Fig. 2) 

E = -a2 j2k, D.E = 2ap0 , 

Po= (Q~ + Qi)'1' = Jal I k. (1b) 

The eigenfunctions of the Cu2+ ion are of the form 

rp1 = {( 1 +cos 6)'1' ~1 + (1 -cos 6)'1' ~2 } ;y2, (2a) 

'P2 = {( 1 -cos 6)'1' ~1- ( 1 +cos 6)'1'~2} ;y2, (2b) 

where 1{!1 and 1{!2 are the functions of the lowest 
orbital cubic doublet of the copper ion. 

It is clear from (1b) that neither the energy of 
the Cu2+ ion (the eigenvalues of the ground-state 
energy and the magnitude of the level splitting) 
nor the energy of the Cu2+y 6 "molecule" (equal to 
U0 -E) depend on the parameter 8, which charac­
terizes the geometry of the complex and the form 
of the eigenfunction of the ground state of the Cu2+ 

ion. 
The fact that the energy of the complex is inde­

pendent of the deformation (within the limits Q~ 
+ Q~ = p~ = const) leads to a situation where the 
usual Jahn-Teller effect has a dynamic character. 
The complex can, namely, go over freely (as long 
as we do not take into account interactions leading 

a b c 

FIG. 2. Energy level splitting for the ion: a- in a field 
of cubic symmetry, b- thanks to the J ahn-Teller effect, c­
thanks to the Jahn-Teller effect, taking the third order approxi­
mation in the displacements of the corner atoms Y from the 
position corresponding to a regular octahedral configuration 
into account. 
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to a suppression of the effect, see Sec. 3) from 
one geometrical arrangement to another one with 
a sufficiently high frequency, determined by ex­
ternal conditions; the latter is caused by the fact 
that all these arrangements correspond to the same 
energy. 

We shall now consider what influence is exerted 
by this phenomenon on the electron density distri­
bution of the Cu2+ ion. The external force changes 
the geometry of the complex, causing a change 
in the distribution in the electron cloud of the 
magnetic ion ( and a change in the ground-state 
eigenfunction of Cu2+ ). This explains the fact 
that although there are no nondiagonal perturba­
tion matrix elements which can be responsible 
for a mixing of the cubic eigenfunctions of the ion, 
nevertheless, in this complex, the eigenfunctions 
of the ground state of the ion are superpositions 
of the eigenfunctions of the orbital cubic doublet 
with, generally speaking, arbitrary coefficients 
that are subject to the conditions of orthogonality 
and normalization [see (2a), where e is arbitrary]. 

The geometry of a complex with a degenerate 
ion in a solid is determined by the crystal lattice, 
so that the distribution of the electron cloud of 
the magnetic ion is fixed, thanks to the stability 
of the complex. The given effect can therefore 
take place in a solid containing a copper complex 
only in the special cases mentioned above (Sec. 1 ). 

To elucidate the influence of the dynamic char­
acter of the Jahn-Teller effect in free complexes 
with other paramagnetic ions we need a special 
consideration. We can point here, however, to the 
essential difference between the copper ion and 
the other ions in that not one of the latter possesses 
the aforementioned degeneracy with respect to the 
geometry of the complex (with the exception of 
Cr2+ and Mn3+, which have an even number of 
electrons ) . 

The first to introduce the idea of the dynamic 
nature of the Jahn-Teller effect in copper com­
plexes were Abragam and Pryce3 in order to ex­
plain the small magnitude and the isotropy of the 
hyperfine structure constant arid the isotropy of 
the g -factor in copper salts with trigonal sym­
metry. In accordance with the dynamic character 
of the effect, they used in their calculations eigen­
functions of the ground state of Cu2+ in the form 
r.p ='l/Jt cos e + lf;2 sine, and assumed that e was 
a cyclic coordinate. After averaging over e they 
obtained g -factors and hfs constants that agreed 
with experiment. The ideal case where the energy 
of the complex is independent of the character of 
the deformation (within the limits Q~ + Q~ = const) 
is, however, in actual fact not realized. It has been 

established (see, for instance, reference 8) that in 
reality the Cu2+Y6 complexes have structures with 
a D4b symmetry. The change in potential energy 
of the complex is equal to A3p3 cos 38 (A3 "' con­
stant, IA3 Ip3 "' 600 cm-1, A3 < 0) 9 (see Fig. 2), 
if we use polar coordinates p, e in the Q2, Q3 

plane. Thus, there is no free "rotation" of the 
complex in the Q2, Q3 plane. All the same, ex­
periment shows that in some cases the hfs con­
stant is averaged, and this averaging cannot be 
ascribed to exchange interactions. 5 It is therefore 
expedient to consider the connection between the 
Jahli-Teller effect and the vibrational motion of 
the complex. 

3. THE JAHN-TELLER EFFECT, TAKING THE 
THffiD ORDER APPROXIMATION IN THE DIS­
PLACEMENTS INTO ACCOUNT 

If one considers the energy of the Cu2+ ion as 
a function of the parameters Q2 and Q3 which 
characterize the change in the geometry of the 
complex, the Hamiltonian of the problem becomes 

n' A A A 1 2 2 3 
Jf = :Je cub+ V2Q2 + VaQa + 2 k (Q2 + Qa) + A3p cos 36. 

(3) 
Its eigenvalues are 

E - + ' + ..!... k '2 + A a 38 -_apo 2 Po 3pocos · (4a) 

From this we get, from the requirement that the 
energy of the system be a minimum, 

£ 1 = - ap~ + + kp~2 + A3p~\ t.E = 2ap~. 

p~=(k-Vk2 ~12aiAai)/6IAal. (4b) 

where E1 is the energy eigenvalue of the Cu2+ ion 
corresponding to the ground state. At the same 
time, E1 characterizes the change in potential 
energy of the Cu2+y 6 complex, considered as a 
molecule, when the complex goes over from an 
unstable octahedral configuration to a stable bi­
pyramidal one. Thanks to the presence of a term 
linear in Q2 and Q3 in the Hamiltonian (3), the 
regular octahedral configuration of the Cu2+Y 6 is 
therefore again unstable, but now both the energy 
of Cu2+ and the energy of Cu2+Y6 as a molecule 
depend on the angle e, and their minimum is re­
alized at e = e0 = 0, 27T/3, and 47T/3. 

Our problem will now consist of establishing 
the dependence of the electron density in Cu2+ on 
the vibrations of the deformed complex. To do 
this we consider Cu2+y6 as a vibrational system. 
The Hamiltonian of the problem has in that case 
the form 

:ft = U0 + V2Q2 + V3Q3 + -f k (Q~ + Q5) + Aap3 cos 36, 

(5) 
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where U0 is the potential energy of a complex that 
has octahedral symmetry. Before we evaluate the 
normal vibrations of the system, the Hamiltonian 
of which is given by (5), it is necessary to find the 
form of the potential function of the complex when 
it has the symmetry corresponding to the energy 
minimum. 

Let Qj; Q2, Q3 (j = 1, ... , 13) be the displace­
ments of the regular octahedral complex, which 
have the symmetry of the vibrational coordinates 
~j· ~2• ~3· The potential function of the bipyram­
idal complex can in these variables be written in 
Ute form 

(6) 

where Q~ and Q~ are the displacements of the 
corner atoms Y. Expanding (6) in a Taylor series 
in the vicinity of Qj = Q2 = Q3 = 0 we get 

U(QJ = 0; Q~, Q~·) = U (0) 

n n 

where U ( 0 ) = U 0 is the potential function of the 
regular octahedral complex. The function 
U (Q~ = 0; Q~, Q~) expressed in this form is 
identical with 

(7) 

U (Q~ = 0; p0 , 8) = U0 + U (p0 , 8), (8) 

where U(p, 8) is (4a). 
We do not consider it our task to calculate the 

normal vibrations of the deformed bipyramidal 
complex and to discuss at the same time the pe­
culiar nature of the vibrations which may occur in 
this case because the metallic ion is not in an S -
state. Our aim is to show that among the normal 
vibrational coordinates of the bipyramidal complex 
there will be coordinates of the kind q = Po - p 

~d y = ~ - 8 which will have the symmetries 
Qa and Q2 respectively; this follows from the 
relations p = (Q~ + Q~) 112 , 8 =arc tan (Q2/Q3) 
if we take into account that Q~ = 0 and Q~ = Po. 
We shall in particular be interested in vibrations 
of the type y, because they influence essentially 
the electronic density of cu2+. 

Expanding (8) in q and y in the neighborhood 
of p0, 80 we get 

U (p, 8) = U (po, 80) + T (k- 6/ A3 / Po cos 380) q2 

+f(k+9/A3 /p~cos 380)12• (9) 

£<2> =-I <cp~ I V2Q2 + VaQal cp~> /2 I t!..E, 

where LlE is the magnitude of the shift of the low­
est orbital doublet of Cu2+ (see Fig. 2); one must 
take the matrix element with respect to the unper­
turbed wave functions of the copper ion <p~ = <p 1 ( 801 
and <p~ = <p 2(8 0 ) [(2a), (2b)]. 

If we consider E <2> as a correction of the second 
order to the energy of the ion, we must take the ma­
trix element with respect to wave functions of Cu2+, 

where the complex is in the vibrational ground state. 
One sees easily that E<2> = 0, since 

<cp!(8) I V2 psin 8 + V3 p cos 81 cp2 (8)) = o 
for the values Po and 8 = 0. We are, however, in­
terested in the contribution of the linear term to the 
vibrational energy of the complex and not to the en­
ergy of the Cu2+ ion, i.e., we must find 

U' (q2, qs) = £(2) (Q~ + q2, Q~ + qa)- £(2) (Qg, Q~), 

where Q~ and Q~ are the values of Q2 and Q3 
at the minimum of the pote~tial ene~y of the de­
formed complex, and q2 = Q2, ~ = Q3 are the vi­
brational coordinates. The calculation shows that 

so that 

V I ( ) ~ 1 k 2 I k 2 2 q2, qa ~-2 q2 = -2 Poi' 

U (p, 8) = l.f (p0 , 80 ) + + (k- 6/ A3 / Po cos 360 ) q2 

(9a) 

It is necessary to note that vibrations of the 
type y possess a peculiar spatial degeneracy: in 
some fixed system of coordinates identical vibra­
tions may occur when the complex is stretched 
along the x, y, or z axis; it is essential for this 
that for the transition, let us say from x to y, 
the system must overcome a relatively high poten­
tial barrier (see Fig. 3). 

We shall now consider the connection between 
the vibrations of the complex of the type y and 
the form of the eigenfunctions of the copper ground 
state. If the complex is in the vibrational ground 

e 

Apart from this, we must take into account the con- FIG. 3. Curve of the potential energy U(p0 , e) of the 
tribution from the linear term.9 We have complex. 
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state as far as the coordinate y is concerned, the 
eigenfunction cp P > of the copper ground state is a 
pure zp1 [ see (2a) and (2b)]. The combinations 
cpl2•3> == il/!1 + (13/2) 1/!2 correspond to a change in 
the configuration of the complex; in some fixed 
system of xyz coordinates, namely, the functions 
cp!2> and cp13> may be the eigenfunctions of the 
Cu2+ ion when the complex is stretched along the 
x and the y axis respectively, if cp <1> is defined 
relative to the z axis. 

If the complex performs vibrations of type y 
with some frequency, the cubic eigenfunction zp2 
will be mixed with the same frequency into the 
eigenfunction cp 1 of the ground state of the ion. 
The amplitude with which zp2 is present in the 
superposition cp 1 (1/!1, 1/!2 ) is determined by the 
expression (1-cos 8)1/2//2 [see (2a)]. 

The interdependence of the eigenvibrations of 
the complex and the form of the function cp 1 of 
the ground state of Cu2+ is a consequence of 
the connection, already noted by us, of the geom­
etry of the complex and the distribution of the 
electron cloud of the magnetic ion. In the equi­
librium state of the complex at a temperature T, 
the eigenfunction zp2 will be present in cp1 with 
some average intensity a 2 == ! < ( 1 -cos e)> av 
(time average) so that the eigenfunctions will be 
of the form* 

(10) 

An arbitrary physical quantity L obtained by quan­
tum mechanical averaging over the ground state of 
the system (such as the g -factor, the hfs con­
stants, and so on) will therefore be of the form 

L = L1- rx2 (L1- L2), L1 = < ~1! L/ ~1), 

(11) 

This mechanism was considered by us. It gives a 
qualitatively correct dependence of the g -factors 
and the hfs constants on the temperature, but 
under the given conditions it is not unique and is, 
apparently, not the main mechanism. 

Indeed it is well known10 that if a quantum par­
ticle with momentum p is in a potential well U ( x) 
of the form depicted in Fig. 4, while U(x) satis­
fies the condition for quasi-classical behavior: 
mtiF/p3 « 1, F == -au/ax, the probability (per 
unit time) for the overcoming of the barrier is 
equal to 

*The eigenfunctions 1/1, and 1/12 taken by us in the LMSSz 
representations are arbitrary spin and orbital functions. This 
is connected with the fact that <1/1, I A(L·S) I 1/12 > = 0, where 
A(L·S) is the spin-orbit interaction. 

FIG. 4. Curve of 
the potential energy 
U(x). 

/) 

w = (w0 I 2rt) exp [- 2n-1! ~ pdx \J, 
a 

since during a unit time interval a particle perform­
ing classical vibrations inside the well impinges 
w0 /27!" times on the barrier. 

The considerations given here are applicable 
in our case to vibrations of type 'Y if the condition 
for quasi -classical behavior is satisfied for the 
potential curve U( p0, e) (see Fig. 3). Calcula­
tion shows that the condition for quasi-classical 
behavior is satisfied for U( p0, e) so that we get 

a, 

w (E)= (w0 j rt) exp [- 2h-1 ! ~ M (8) dO!], (12a) 
a, 

where 

U (p0 , 8) = U 0 (I -cos 38), U o = I Aal p~, 

and M ( e ) is found from the equation 

M 2 I 2J + U (p0 , 8) = E. 

J is the moment of inertia for the "rotation" of 
the complex along the circle Q~ + Qi == const; for 
the hydrated complex J"' 7.8 x 10-'0 g-cm2 (for 
Po== 0.3 x 10-8 cm); 9 E is the energy. 

It is clear that if the vibrations have large am­
plitudes they will no longer be harmonic, but for 
2 I A3 I p~ » E we can restrict ourselves to the 
harmonic -oscillator approximation for a rough 
estimate of the frequency w0 of the vibrations. 
For hydrated complexes w0 ~ 5 x 1013 sec-1 

(tiw0 ~ 300 em -1 ). 

Since Jw~ == 91 Aal p~, 
8, 

w(E)= :o exp [-~~~ ~~ V2[E/U0 -(l-coso)]doiJ. 
8, 

(12b) 

It is unfortunately difficult to perform the ther­
modynamic averaging (12b) and to find w(T; M, Uo) 
explicitly (M is the mass of the corner atoms Y, 
and 2U 0 the height of the potential barrier ) . In­
deed, for such an averaging it is assumed that E 
changes from 0 to oo • For a sufficiently large 
increase of E the theory of small vibrations be­
comes, however, inapplicable so that w0 == Wo (E). 

It is well known that an exchange interaction 
of the order of I ,... 1 em -t ( I/fi = Wexch "" 2 



728 V. I. AVV AKUMOV 

x 1011 sec-1 ) leads practically to a complete re­
moval of hfs in copper. The given mechanism will 
thus be essential for the averaging of the hfs and 
g -factor, only if the frequency of the "rotation" of 
the electron density 2w "' 1011 sec -1• 

In addition to the tunnel effect, another factor 
contributing to the "rotation" of the electron den­
sity is the classical mechanism of overcoming the 
potential barrier through energy fluctuations. This. 
mechanism is not considered in the present paper. 

4. DISCUSSION 

The decrease in the hfs constant, which i~ ob­
served in a number of cases in solid salts of ele­
ments of the iron group and in particular in copper 
salts, is usually explained either by exchange inter­
actions or by a partial covalent bond between the 
magnetic ion and the corner atoms. 

We propose still another mechanism for solu­
tions of copper salts, which under well defined con­
ditions may lead to both isotropy and a decrease 
of the hfs constants and at the same time to iso­
tropy of the g -factor; this mechanism predicts, 
generally speaking, a temperature dependence of 
the hfs constants and of the g -factors. 

If there occurs a "rotation" of the electron den­
sity, as discussed in Sec. 3, the eigenfunction of 
the ground state can be written in the form 

IX(.w) = (!-cos2rrwt)'1'!V2. 

and tha magnitude of L is equal to the time 
average 

L = (rp1l L I !Jll)av= L1- (1X2 (-;;;))av(Ll- L2). 

For such an average the ratio of 2w and the 
frequency of the Larmor precession Wres is ~ 
important quantity. If the barrier is sufficiently 
low so that 2mv » wres one may put the period 
T equal to 27T/wres· We have then 

This corresponds to a complete averaging of the 
quantity L. 

In the other extreme case, when the barrier is 
so high that 2mv = wres• one cannot average the 
quantity L by taking the overcoming of the barrier 
into account. Only the eigenvibrations of the com­
plex can in that case influence the magnitude of L; 
however, calculation shows that the influence of 
these vibrations is unimportant. 

When 2mv "' Wres the magnitude of L will be 
temperature dependent. As was mentioned already 

it is difficult to get an explicit expression for this 
dependence. 

In hydrated complexes Cu2+ ( H20) 6 in solutions 
and also in copper salts with a trigonal symmetry, 
complete averaging apparently does take place. 
Bearing in mind that* 

g~l) = g~l) = 2.28, g~l) = 2.0, 

1 A <2> ! = I 10. I0-4cm-1 , 1 B<2> 1 = 30. I0-4cn11 , 

we get 

gx = & = 2.19, ~=2,23, 

I A I= J7.J0-4 cn1\ 181 = 24·I0-4 cnr1 • 

In evaluating I A I and I B I we have taken into 
account the theoretical considerations about the 
signs of the constants A and B .U 

In the framework of the given theory there is 
also an explanation for the experimental fact that 
some copper complexes, as a rule with heavy cor­
ner atoms, 12 have a hyperfine structure. Indeed, 
the theoretical considerations involve the three 
parameters J, w0, and I A3 1 p~ which are con-. 
nected by the relation J w~ = 9 I A3 I p~ . A change 
in the corner atoms may lead both to a change in 
I A3 I p~ and to a change in J due to a change in the 
effective mass of the complex ( J ~ !Mp~): one 
must understand by M not the total mass of the 
corner atoms, but some effective mass, since the 
corner atoms Y do not take part in the vibrations 
of the complex as a whole. If we assume that IA3 Ip~ 
does not change appreciably when we make a sub­
stitution of the corner atoms, we obtain all the 
same an important dependence of w on the mass 
of the corner atoms, as follows from Eq. (12b) 
( Wo = .J 91 Aal PV J ) . We have not enough data 
about the character of the change of the quantities 
mentioned at our disposal to make concrete cal­
culations. 

In conclusion the author expresses his deep 
gratitude to B. M. Kozyrev for a discussion of 
his results and to S. A. Al'tshuler for his interest 
in the work. 
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