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A method is developed for treatment of scattering by a singular potential in the momentum 
representation and in perturbation theory. Application of such renormalization techniques 
permits one to derive well-known results for cross sections, despite the fact that the inte­
grals diverge and the matrix elements entering into the wave equation in the momentum 
representation vanish. 

THE problem is considered below of scattering in 
the presence of a nearby resonant level - real, as 
a deuteron in the triplet state, or virtual, as in the 
singlet np scattering. In the limit, this problem 
can be regarded as scattering by a potential U, 
acting for r < r 0, where U-- oo, r 0 - 0, such 
that 

(the coefficients refer to a rectangular well ) . 
The usual solution of this problem is found in 

space coordinates by replacing the action of the 
potential by a boundary condition applied to the 
wave function cp = rlj; at the origin: 

dIn cp I dr = mw I h2 =- I/ a; 

This boundary condition follows from a solution of 
the Schrodinger equation for r :s r 0• As is well 
known, the value of a completely determines the 
value of the scattering cross section: 

cr = 4rra2 [I + (ap I t.) 2r 1 

for pr0 « 1. If a > 0, there is also a single 
bound state with energy E = -ti2/2ma2• 

The problem becomes singular if treated by 
perturbation theory. By considering the transition 
from a state with one momentum p into a state 
with another momentum p' under the action of a 
potential U, it is easy to establish the fact that 
the corresponding matrix element 

U (p, p') = (2rr)-a ~ U (r) ei<P-P')r d3r (1) 

does not exceed U •% 1rr~ and, consequently, in 
the limit as r 0 - 0, the matrix element also tends 
to zero as r 0, inasmuch as U ~ r 02• 

It is evident that in the limit not only the first 

approximation of perturbation theory disappears, 
but also the sum of any finite number of terms of 
the series; however, the sum of the entire infinite 
series of perturbation theory preserves completely 
a definite value of the transition probability, i.e., 
the scattering cross section. As we shall see be­
low, in the transition to the limit r 0 - 0, along 
with the transition to zero of each term of the 
series of perturbation theory, the number of terms 
of the series which must be taken into considera­
tion tends to infinity. Since one ordinarily uses 
not the coordinate representation, as in field the­
ory, but precisely perturbation theory in momen­
tum representation, a complete explanation of such 
a peculiar situation in a simple example can be of 
interest. 

Perturbation theory uses plane waves as a base, 
i.e., it is essentially close to a consideration of 
the problem in the momentum representation.* In 
this representation the matrix element U (p, p') 
enters into the equation and the surmounting of the 
difficulties associated with U (p, p')- 0 also 
opens up a path to the solution of the problem in 
perturbation theory. The method of obtaining the 
correct result in the· momentum representation in 
the transition to the limit of the quantities enter­
ing into it is very instructive and has general simi­
larities with the methods of renormalization, es­
pecially in that form in which they were applied 
by Heisenbert to the Lee model. 

1. THE EQUATION IN THE MOMENTUM REPRE­
SENTATION 

Substituting in the Schrodinger equation (n = m 
= 1) 

*Scattering and the bound state in the momentum represen­
tation were considered by Salpeter;' see also reference 3. 
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rj> = (2rc)-'f, ~ X (p) eiPxdap, 

we get an equation for x (p) 

(2} 

(p 2 - 2£) x (p) =- 2 ~ d3p'x (p') u (p', p) (3) 

[U (p, p'} is determined by Eq. (1)]. In the prob­
lem of the determination of the bound level, we set 
E = -K2/2; Eq. (3} is rewritten in the form 

(p2 + x2) X (p} =- 2 ~ d3p'x (p') U (p', p). (4) 

In the scattering problem, we set E = k2/2 > 0; 
the momentum k and energy E = k2/2 of the in­
cident wave are given. Equation (3} is rewritten 
ih the form 

Its solution must contain the incident wave and the 
scattered wave of the same energy, i.e., 

X (p) = o (p- k) + f (p), 

such that the problem reduces to the determination 
of f ( p} for p2 = k2• 

Returning to the specifics of the singular poten­
tial, we observe that for r 0 - 0, the function 
U (p, p'} - 0, but the dependence of U on I pI, 
I p' I simultaneously vanishes up to I pI "' l/r0, 

I p' I "' 1/r0• We set 

u (p, p') = - c for 1 p 1 < b, I p' I < b; 

u (p, p') = o for 1 p 1 > b, 1 p' 1 > b, (6} 

in order to make the subsequent transition to the 
limit C - 0, b - oo. 

For the bound state we get from the equation 
b 

(p2 + x 2) X (p) = 2C ~ X (p') d3p' (7) 
0 

b 

X (p) = qj(p• + x2), q = 8rcC ~ dp'qp'2j(p'2 + x2). (8) 
0 

For scattering, it follows from the equation 
b 

(p2- k•)x (p) = 2C ~ y."(p') d3p' 
0 

that 

X (p) = o (P- k) + -p-;;-• _--'-q-.k•.-' 

b 

q = 2C [ ~ dp'4rtqp' 2 I (p' 2 - k2) + IJ. 
0 

(9} 

(10} 

2. TRANSITION TO THE SINGULAR POTENTIAL 

It is now seen why the equation can have a finite 
solution: in spite of the transition to zero C 
=- U (p, p' }, the limiting value of the momentum 
b, for which decrease of U begins, increases 
along with decrease in r 0• The quantity C enters 
into Eqs. (8} and (10} multiplied by an integral which 
diverges as b for b - oo. 

We set 
b 

\ 
4rcp2 

2C -.- dp = 8rrCb =I+ 4rc 2ZC. p 
0 

(11} 

This is the cormection between the transition C - 0 
and b - oo , which is necessary in order that we 
obtain a finite answer, i.e., in order that resonance 
take place. It is easy to prove that the condition 
Cb = const is equivalent to Ur~ = const, r 0 - 0. 
Here Cb must have a completely determined 
value for the existence of a solution. The coeffi­
cient Z, which shows just how Cb tends toward 
its limiting value, is also important for the result: 
The factor 411"2 is introduced in the term 4~ZC 
only for convenience. 

We further divide the diverging (as b - oo} 
integral (8}, (10} into a constant diverging integral 
and a converging integral which depends on the 
quantities entering into the conditions of the prob­
lem. Making use of the identities 

(p2 + x2t 1 = p-• -- x2/P2 (p2 + X2), (12a) 

we find 
b 

I P' 
) p' + x• 
a 

b b 

dp-= ~ dp -~ 
0 0 

=b-xtan-1 ~---->-b- ;x (b---->-oo) 

and, by substituting in (8), we obtain 

q = 8rrCq (b -rtx/2), 4rc 2 (ZC- Cx) = 0. 

(13) 

(14} 

We now let C- 0. The real level exists only 
for Z > 0, and its energy is given~ the value 
K = Z. 

The scattering problem is solved in similar 
fashion. Substituting (12b) and (11) in (10), we obtain 

b 

q = q (I+ 4rr2ZC) + 8rcqCk 2 ~ P/!_k• + 2C. (15) 
0 

After division by q and C we allow the limiting 
transition C- 0, b-oo in Eq. (15}. In taking 
the integral 
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it is necessary to take into account that K (p) 
must be written as a diverging wave. As is well 
known,2 it is necessary to integrate in this case 
over the real axis of the variable p, assuming 
that p has a small imaginary part: p- p + iE, 
E > 0, lim E = 0. Carrying out the integration in 
this fashion, we get 

Substitution of the resulting integral in (15) gives 

(16) 

and consequently the wave function of the scatter­
ing problem in the momentum representation has 
the form 

o(p- k)+ Zs (p). 
(17) 

We find the asymptotic form of the function, cor­
responding to the second term Xs of (17) in the 
coordinate representation: 

00 

~ (r) = ~ eiPrXs (p) d3p= :; ~ (eipr- e-ipr) PXs (p) dp • 

+oo 0 

2" \' . eiA· 1 ikr 
= ---r;- ~ e'P'Xs (p) pdp= 41t2 -,-Res {Xs(P)} = z + ik r; · 

-oo 

(18) 

By comparing the scattered current with the 
current in the incident wave, we find the scattering 
cross section in the form 

I 1 ,. 47t 
cr = 41t z + ik = Z2 + k2 ' (19) 

as was to have been expected. In the presence of 
a bound level ( Z = K ) a quantity appears in the 
numerator of (19), which is proportional to the 
sum of the collision energy and the binding energy 
of the level; in the absence of a bound level ( Z < 0 ), 
Z2 is a quantity proportional to the energy of the 
virtual level. 

3. PERTURBATION THEORY 

The solution of the problem by the method of 
perturbation theory consists of iteration of the 
integral equation (5). In the zeroth approximation, 
we have only the incident wave 

Xo = o (p- k). (20) 

Substituting (5) on the right hand side, we get 
00 

X1 = Xo- p•'!...k. ~ d3p'z (p') U (p, p') = o (p- k) + /.!:_k,. 

0 (21) 

The subsequent approximation gives 

00 

~ ( k) + 2C + 2 \ d3 'U ( , ) 2C (2 ) 
X2 = o P - p• -k• p• -k2 J P P • P p''-kz • 2 

0 
The integral on the right hand side is transformed 
by the method applied in Sec. 2: 

~ u ( ') zc d3 ' - s c [cb , c k•"i J .) p, p p'2 -k2 p - 1t T ----:;k , (23) 

from which it follows that 

X• = o (p- k) + P2
2!!_ k• + p' '2!!_ k2 [S:tCb + i4:t2kJ. (22a) 

It is easy to prove that the perturbation-theory 
series is a geometric progression, the denominator 
of which is the expression in the square brackets in 
(22a), while the first term is 2C/ (p2 - k2 ). We then 
immediately obtain the sum of the infinite number of 
terms 

, . 1 2C 
Zoo = 0 (p- k) + p'- k2 1- 81tCb- iC41t'k · (24) 

It is now evident that for the result to be finite 
it is necessary that the difference ( 1 - 81rCb) be 
of order C. Taking for Cb the limiting expres­
sion in Eq. (11), we get the expression x (p) of 
Eq. (17) from (24). Thus, in the limit the denomi­
nator a of the geometric progression actually 
tends to unity (the difference 1 - a ~ C ) , while 
the effective number of terms of the series tends 
to infinity as 1/C, which also compensates the 
trend to zero of each separate term of the series, 
which is proportional to C. 

We note that Eq. (24) remains in force even 
when Z > 0, I a I > 1 (the case of the existence 
of a bound level), in spite of the divergence of 
the series of perturbation theory for I a I > 1. 

4. MORE RIGOROUS METHOD 

The transformations connected with the elimi­
nation of the zeros ( C - 0) and the infinities 
(b - oo) were carried out above schematically 
under the assumption that U (p, p') is broken off 
sharply for p > b. Evidently, all the discussions 
can be carried out more rigorously if we write 

U -= Cf (/ p- p'Jjb), X = p' ~ x• g (/ P //b), 

where the characteristic functions f and g sat­
isfy the condition f ( 0) = g ( 0) = 1 and coincide at 
large values of the arguments. The condition con­
necting C and b is written as follows: 

co 

2C ~ f (/ p- p'/fb)g ([ p- p' //b);. d3p =I + 4;-c 2Zt'. 
I) 

After subtraction similar to (12a) and (12b), we ob­
tain integrals of the form 
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00 

x2 \ f (J p- p' 1/b) g <I p- p' !!b) d3 , 
~ (p'2 + x:) p ' 
0 

It is important that these integrals converge inde­
pendently of the decrease of f and g, because of 
the high power of the denominator. Therefore, 
their values and dependence on K can be immedi­
ately computed for b ----.. oo , i.e., in the approxima­
tion f = g = 1. 

Thus the connection between the scattering cross 
section and the location of the level (the real or 
virtual) is shown to be independent of the concrete 
form of U ( r ) . Computations carried out in all 
their triviality and absence of new results are in­
structive. A mechanism is given for obtaining a 
finite scattering cross section of a bound level 

under the action of a potential which gives a van­
ishing matrix element in perturbation theory of 
arbitrary (n-th) order. One can easily show that 
only an infinitely short duration of such a perturba­
tion is capable (at a given relation between the 
zero and the infinity) of giving a finite effect. 
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