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A stochastic equation is derived by means of the phenomenological equations of motion under
well-defined assumptions. The thermal noise of a nonlinear resistance is considered as an

example.

IN view of the fact that a mathematical analysis

of the exact dynamical picture of non-equilibrium
statistical processes is very difficult, it is advis-
able to study such processes using equations of the
phenomenological type. This leaves only a small
number of coordinates to be considered (the coor-
dinates of a Brownian particle, the charge or cur-
rent in an electrical circuit, and so on). The par-
ticipation of a huge number of other particles in

the process expresses itself implicitly in two ways.

Firstly, there is dissipation, which is described by
the phenomenological equation for the average ve-
locity-dependent force (elementary dynamical in-
teractions are non-dissipative). Secondly, there
are the fluctuating impacts from the surrounding
medium. The average phenomenological force
defines the first-derivative term in the stochastic
equation, while the fluctuating impacts cause the
occurrence of terms (or a term) with higher de-
rivatives. An evaluation of the statistics of the
fluctuating actions so as to determine the form of
these terms is a more difficult problem than the
determination of the average phenomenological
force. The latter can be determined experimen-
tally and can be considered as given in the theory.
From general considerations it follows that there
is a connection between the statistics of the fluc-
tuating actions and the dissipation in the system.
The determination of these statistics from the
dissipation mechanism is a general and important
problem in statistical physics and has many di-
verse applications.

For the case where the dissipative force de-
pends linearly on the velocity the above problem
was solved in the classical papers on Brownian
motion (Langevin and others). The problem is,
however, appreciably more complicated in the
case ofa nonlinear mechanism of dissipation, and
has not yet been solved in general form at the
present. Some authors (see, for instance, ref-

erence 1) even deny the existence of a necessarily
unique connection between the average force and
the intensity of the impacts in the general case.
The papers of Magalinskii and Terletskii?™* were
devoted to a consideration of the above mentioned
problem, but gave rise to important objections.

In the present paper we give an exact solution
of a well-defined problem; that is to say, we de-
rive a stochastic equation under the assumption
that the relaxation time for the velocity is much
smaller than the relaxationtime for the coordinate.
To do this we apply a method based on a corrected
and extended version of the method proposed in
references 2 —4.

Let g be one or several coordinates of an ar-
bitrary mechanical system described by a Hamil-
tonian H (p, p’, 4, q’) (the g’ are the remaining
coordinates). The process of motion is deter-
mined by the dynamical equations

g=0H/dp, p=—0JH/dq. (1)
The totality of the influence of the variables q’,
which correspond to the medium through which the
particle moves, can be described phenomenolog-
ically by introducing a frictional force (in the
general case nonlinear) and fluctuating forces.
The exact Egs. (1) are then replaced by a phenom-
enological equation of the Langevin type

g=®(q, ¢ )=F(@q, 9 +:(, ¢ q)- (2)

We assume that the kinetic energy pertaining to
the coordinate q is equal to m&*/2. The function
& in (2) has the meaning of a force divided by the
mass m. The division by m was performed to
simplify the formulae and we shall continue to
call & a “force.”

The force @ is given in (2) as the sum of an
average force, F =&, and a fluctuating term
which by definition has an average value of zero:
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E(tv g, q) = 0. (3)

For the sake of simplicity, we have chosen to write
our equations in one-dimensional form (q is one
coordinate).

The dependence of the force on the coordinate
and on the velocity can be determined experimen-
tally. One must average the action of the fluctu-
ating force in that case over some time interval
Tys which must be longer than the correlation
time T7; of the fluctuating force: 7y » 7. The
length of the time interval over which itis averaged
has no upper bound. However, to obtain as detailed
a phenomenological description of the system as
possible, it is desirable to choose the smallest
value compatible with the above-mentioned in-
equality.

What we can measure is essentially not the ex-
act force ® as a function of q and 4, but an
average force § as a function of the average
values q and q. The tilde on top indicates here
an average over the time 7y, for instance,

4+t v .
q*: T1 g Gdt — q(t—}-—»!,_.)—q(t; _
u b Yy

(4

Because of the condition T, > 74 d> is the same
as F. If we wish to find out how q and q are
connected with the instantaneous values q and q,
we must take into account the relaxation times of
the latter. We introduced along with 7, the ve-
locity relaxation time

w~q/qg~ q/F (5)
and the coordinate relaxation time
T3~ q~/ q . (6)

Different relations are possible between the
time constants Ty, T, and T73. We consider the
case where

Ty K T3 (7)
and where we can consider phenomenological equa-

tions that correspond to a time of averaging which
satisfies the inequalities

_‘!/ < T3y (8)
> . (9)

Assume, in particular, that (7) is satisfied and the
force relaxation time Ty is comparable with Ty

1 ~Ts. (10)

If we then choose our averaging time so that 7

K Ty K T3, we satisfy condltlons (8) and (9).
Because of inequality (8), q is the same as q

but q differs from the instantaneous value of d.
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The trajectory in phase space is no longer a Markov
process. Because of (7) the q(t) process can,
however, be considered to be a Markov process.
Our problem is to express its statistical chazacter—
istics through the experimental function F(q, q),
which is supposed to be known.

Inequality (9) enables us to state that the time
average is the same as the statistical average

9=q (11)
[we are considering an ensemble for which q(tg)
=(qy]. This average value is independent of the
initial velocity q(t;), the influence of which van-
ishes within a period of time of the order of T,.

It is thus some phenomenological function of the
coordinate,

q="1(q. (12)

Taking (11) into account we can write the phe-
nomenological equation (2) in the form

The function (12) can be determined from Eq. (13).
Indeed, averaging (13) and taking (3) into account,
we find

(13)

o= F (v, p).
Substituting (12) and performing the transformation

o = {(q) = (9/99) o,
we obtain the equation

of/0q = F(f, 9)/f,,

from which we can determine f(q). One can sim-
plify this with the aid of (7). To do this we take
into account Eqgs. (5) and (6) which define 7, and
73. The latter can be written

w1~ f/q ~0f/dq. (15)

According to (5) F/v is of the order of 1/7,
for most values of v; in our case, however, it is
of order 1/73, [i.e., appreciably smaller, because
of (7)] as can be seen from (14) and (15). This ex-
ceptional value must be determined from the equa-
tion

(14

F (v, q) = 0. (16)
The latter states that an average velocity is set up
in such a way that it corresponds to a zero force
acting upon the particle.

Turning to the dynamical equations (1), we shall
consider instead of the variables q and p the co-
ordinate and velocity q and v =¢q. In that case
Eq. (1) is transformed into
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g=v, v=0G(q, v, p, q)=—m"9Hdq. (17

Here G (q, Vv, p’, q’) is the dynamical expression

for the force, corresponding to the phenomenological

expression ®. The probability distribution density
w=w(q, v, p’, q’) changes according to the equa-
tion

oq

We are especially interested in the well-defined
initial condition q =q, at t =t; which corre-
sponds to

[@]i=r, = 8 (9 — Go) Wo (v, P, q') (19)

(the initial distribution wy (v, p’, q°) does not
play a large part since it relaxes rapidly).
We introduce the functions

W = evw, (20)
Z(u) = S WdQ = S e 1dQ, (21)
w=W/Z (1) (22)

(dQ =dgqdvdp’dgq’) and ascertain their time varia-
tion. Writing (18) in the form

euaW = A (e—W)
and differentiating we get
W = AW + uoW. (23)
If we integrate this equation over v and q we get
Z (1) = uoW, (24)

where

o=z { owae = { vwae. (25)
Differentiating W with respect to time and substi-
tuting (23) and (24), we find

w=Aw+u@ — v)w. (26)

We write the last term in (26) as a differential
expression
—_——~ 2 1 0 \m d\n ~
(v—0)w= 2 m(— 75:7) (— %> Bmaw). (27)
m, n=0
Here PBmn = Bmn(d¢) are suitably chosen coeffi-
cients. It is shown in the Appendix that they can

easily be expressed in terms of the correlation
functions of the velocity fluctuations; in particular,

Bo1 = (v — 0)* = ks (0),

b= (@ — @) (0 —0) =\ ko D . (28)

0

Because of (27), Eq. (26) is equivalent to

g=v+a(®), v=0G(q v, P, ¢)+b(t), (29)

where a(t) and b(t) are random functions with
average values

b = uBy,, (30)

and with correlation functions (for r quantities a
and s quantities b)

-5 trys, Go)

a = uB,,

k(r)a, (s) b (tn .

=uBS(ta—1t) ... 8(tres— 1) (31)

(cf. reference 5).

Equations (29) enable us to interpret W as the
distribution density for some new mechanical sys-
tem subjected to additional forces a and b, each
with a steady and a fluctuating term.

The additional forces can be included not only
in the dynamic, but also in the phenomenological
equations. In accordance with (29), Egs. (13) are
replaced by

g=v+a(t), ov=F (v, q+E(F) +b(), (32)

We use (32) to find a new phenomenological func-
tion

q="1(q w, (33)

which determines the average velocity. Averaging
(32), we have

g=v+a 0=F(@, q+b (34)
As in the derivation of Eq. (16), we find from the

second equation of (34)

F(v, q) b = 0. (35)

Solving with respect to Vv and denoting the corre-
sponding function by f;, we get

5=f1 (g, u). (36)

Substituting (36) into the first equation of (34), we
get the required function (33):

q=1(g )=/ w+a (37)

The function (12) is, of course, none other than a
particular value, f(q, 0).

We now turn to the problem of the diffusion of
an initial distribution of the type (19). In the first
period, while t—t; < 75, the fluctuations of q(t)
are not like a Markov process. Thereg.fter, when
T, < t —ty < 73 the average velocity § approaches
the function (12), which is independent of the initial
velocity. For those intervals of time, the fluctuat-
ing process q(t) can at the same time be consid-
ered to be a Markov process. The distribution
w(q, qq), obtained from the initial distribution
6(q—qp), then generates a Markov transition
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probability and characterizes completely the fluc-
tuating process. For time intervals satisfying the
condition

Ty Lt — 1ty < 1y,

the coordinate q does not have time to change
strongly, and we have from Eq. (33), for the
chosen initial condition,

E= Go 4 (£ —to) [ (g0, u).

According to what has been said above, the av-
eraging q is then done over an ensemble corre-
sponding to the included additional forces a, b, i.e.,
with the weight of w. According to (20) -- (22),
this average can be written as

(38)

- ~ 1 1 0z

q= SqwdQ = S qewdQ = — == (39)
Because of this (38) goes over into the equation

all’l Z (u)/au = qO + (t - tO) f (%y u): (40)

from which we can determine Z (u). When inte-
grating this we take into account the initial condi-
tion Z (0) =1, which follows from (21), and we
get

Z (u) = exp{qon + (¢ —to) \ (@0, w)du).

0

(41)

For imaginary values of the argument u =iv
the function Z (u) is none other than the charac-
teristic function exp (iv). The required transition
probability can thus be obtained from it by a Fourier
transformation

1

5= | €92 (iv) do.

w(q, Go)= (42)

Knowing the transition probability one can evaluate
how any other initial distribution w(qg, t5) will
change. The Markov condition leads to

0@, )= 0@ WG tdp.  43)

The choice of the initial moment is arbitrary; giving
ty increasing values we can follow the complete
evolution of the distribution density.

It is convenient to consider a differential sto-
chastic equation. To get it we expand (40) in pow-
ers of t—t,. Retaining only the first two terms
we have

N oul

Z (u) = et 4 (t —to) et s K (go)-

u s=1
The function f f(qg, u)du is here expanded in a

(44)

0
Maclaurin series and

Ks (Qo) = [as-—lf (qO» u’)/aus—]']u=0- (45)
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After substituting (44) into (42) we ﬁnd
w(q, Go) = 8(9— qo) ‘
+—t) Do (— o) K@sla—q0  (46)
s=1

To obtain the stochastic equation we must still
substitute (46) into (43). The term w(q, t;) ob-
tained after integrating with 6 (q —qy) is shifted
to the left-hand side and [w(q, t) —w(q, ty)]/
(t—ty) is denoted w. The result is

iod
w(g)= %+

s=1

aS
(— 1) rra [Ks (9) @ (g)]. 47)
From a mathematical point of view, the main
result here is that the correlation functions [or,
what is the same, the moments 7 (t;, q)...7n(tg, q)]
of the random functions 7 (t, q) in the equation

q=1(q)+ n(t q), (48)

which is equivalent to (47), cannot be given arbi-
trarily, but are uniquely determined by the force
function F(q, v).

First example. A particle experiencing nonlinear
friction. Let a conservative force g(q) and a non-
linear frictional force ¢ (v) act upon the particle.
The phenomenological Eq. (13) is of the form

mo=g(q)—¢@©+m, g=rc. (49)
In this case
~mie, T~ q9/g.
The condition for the applicability of the theory
given here is thus of the form
mje’ <<, < q¢'/g. (50)

The system with the additional forces included is
described by the phenomenological equations

G=vta  mv=g(q) — (o)~ mE+mb,
Averaging these and solving the equation

9(v) =g (q) + mb,
which corresponds to Eq. (35), we find

g = a+¢(mb+g).
Here i is the inverse of ¢ (v). According to
(28) and (30) we then have

a=upo=u(@—q)@©—0), b= upy=u@—0)

In view of the fact that the velocity distribution at
time t-—ty > 715 is practically the same as at
equilibrium, i.e., a Maxwell distribution, we have
mb =u® (@ is the temperature).

The coefficients in (47) are evaluated from the
equations
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f(q,u) = uByo 4 ¢ (uB 4 g);
K, = Bio + 69" (g),

K, = q)(g),

Ko=0"9"D(g) (n=3,4,..,).
(51)

To evaluate B,y it is expedient to take into ac-
count that
@—9 (v—0) =5 d(@—q)?/dt =5 d(Kpt)/dt
and, thus, By = %K,.
Taking (37) and (45) into account we get
K, = 204" (¢) = 26 /¢ (K)).

In the particular case where the frictional function
is linear [¢ (v) = Bv] the relation given here gives
the usual expressions

K.=g/B, K,=28/8, Kzy=---=0.

Second example. The mechanical example con-
sidered is analogous to an electrical circuit contain-
ing a nonlinear resistance and a nonlinear capaci-
tance (Figure). q is then the charge on the capaci-

(52)

F—%(1)

tance and § =1 the current in the circuit, while
the induction L plays the role of the mass. The
relaxation times are in this case equal to

TQN'L/R, T3~RC

[R=dVgy/dl, C=Vc/q=g(q)/q]. We can use
for this circuit Eq. (46) with the values of the co-
efficients from (51), if

L/R<RC

and if ¢ (I) is taken to mean the function that de-
scribes the dependence of the average potential
across the resistance on the average current after
atime 71y > L/R

(53)

Ve = ¢ ().
When the dependence of the voltage on the in-
stantaneous current
Ve =V ()

(which corresponds to 71 < Ty < T3) is known
from experiments, we can find the function ¢
corresponding to longer averaging times from
the formula

o) =VL]20{V (hexp |- —Ddr. (54

In the region of stationary fluctuations the quan-
tity I2L/® (which is of the same order of magni-
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tude as (T/V)ZL/C) is small because of the ine-
quality (53). This enables us to expand (54) in a
power series in 1. Restricting ourselves to the

first term we have

¢(I) =8I = Req I,

where

(S

VD Iexp {— L rebar
) {~m

—0o0

L (L) (55)

Req= Vom\0 )
is the equivalent linear resistance by which we can
replace the given nonlinear resistance.

The consideration given here was restricted by
the condition of fast relaxation of the velocity: T,
< 73. It would be of great interest to get rid of
this restriction.

The author expresses his gratitude to Acade-
mician M. A. Leontovich and Professor Ya. P.
Terletskii for their interest in the present paper
and for a number of helpful discussions.

APPENDIX

We shall find the coefficients By, of the ex-
pansion (27). We multiply both sides of this equa-
tionby E=exp[(q—q)x+ (v-V)y] and inte-
grate over q and v. The integral f(v -V) Ewdqdv
can be written in the form 90 (x, y)/dy, where

A (x, ) = gEadqdv

is the two-dimensional characteristic function of
the quantities q—q and v -V. Further integra-
tions by parts give

a m a n ~
(= 2)" (= &) @) E dgdo = 2747808 (5,5,
(27) is thus equivalent to the equation

pmn

At the same time, the two-dimensional character-
istic function can, as is well known, be expressed
in terms of the cumulants kp,, corresponding to
the random functions q—q, v—V by the equation

oo

08

x™Myn
ay; ex

dIn® _ «x"y”
mlnl 1 Bmn-

Or =5~ = “ml

m,n
In8 (x, y)= ;—!szTk

m, n=1;

mns

Equating the last two equations we find
?mn = kmn+1 .

If we know the (m+p)th velocity correlation
function

Runtpyo (F1y « « + s tmtp)s



ON THE THEORY OF NON-EQUILIBRIUM STATISTICAL PROCESSES 603

we can, by integrating, obtain the cumulant 3V. B. Magalinskii, JETP 36, 1423 (1959), Soviet
t Phys. JETP 9, 1011 (1959).
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Bor (which are respectively equal to kyy, kyp,) that 26, 189 (1954).
they are expressed in terms of k, (1) = Kayylt, t+7)
by Egs. (28).
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