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A stochastic equation is derived by means of the phenomenological equations of motion under 
well-defined assumptions. The thermal noise of a nonlinear resistance is considered as an 
example. 

IN view of the fact that a mathematical analysis 
of the exact dynamical picture of non-equilibrium 
statistical processes is very difficult, it is advis­
able to study such processes using equations of the 
phenomenological type. This leaves only a small 
number of coordinates to be considered (the coor­
dinates of a Brownian particle, the charge or cur­
rent in an electrical circuit, and so on). The par­
ticipation of a huge number of other particles in 
the process expresses itself implicitly in two ways. 
Firstly, there is dissipation, which is described by 
the phenomenological equation for the average ve­
locity-dependent force (elementary dynamical in­
teractions are non-dissipative). Secondly, there 
are the fluctuating impacts from the surrounding 
medium. The average phenomenological force 
defines the first-derivative term in the stochastic 
equation, while the fluctuating impacts cause the 
occurrence of terms (or a term) with higher de­
rivatives. An evaluation of the statistics of the 
fluctuating actions so as to determine the form of 
these terms is a more difficult problem than the 
determination of the average phenomenological 
force. The latter can be determined experimen­
tally and can be considered a.s given in the theory. 
From general considerations it follows that there 
is a connection between the statistics of the fluc­
tuating actions and the dissipation in the system. 
The determination of these statistics from the 
dissipation mechanism is a general and important 
problem in statistical physics and has many di­
verse applications. 

For the case where the dissipative force de­
pends linearly on.the velocity the above problem 
was solved in the classical papers on Brownian 
motion (Langevin and others). The problem is, 
however, appreciably more complicated in the 
case of a nonlinear mechanism of dissipation, and 
has not yet been solved in general form at the 
present. Some authors (see, for instance, ref-

erence 1 ) even deny the existence of a necessarily 
unique connection between the average f9rce and 
the intensity of the impacts in the general case. 
The papers of Magalinski'l and Terletskil 2- 4 were 
devoted to a consideration of the above mentioned 
problem, but gave rise to important objections. 

In the present paper we give an exact solution 
of a well-defined problem; that is to say, we de­
rive a stochastic equation under the assumption 
that the relaxation time for the velocity is much 
smaller than the relaxationtime for the coordinate. 
To do this we apply a method based on a corrected 
and extended version of the method proposed in 
references 2-4. 

Let q be one or several coordinates of an ar­
bitrary mechanical system described by a Hamil­
tonian H (p, p', q, q') (the q' are the remaining 
coordinates). The process of motion is deter­
mined by the dynamical equations 

p = - a H ! cJq. (1) 

The totality of the influence of the· variables q', 
which correspond to the medium through which the 
particle moves, can be described phenomenolog­
ically by introducing a frictional force (in the 
general case nonlinear) and fluctuating forces. 
The exact Eqs. (1) are then replaced by a phenom­
enological equation of the Langevin type 

q = <D(q, q, t) = F (q, q) +; (t, q, q). (2) 

We assume that the kinetic energy pertaining to 
the coordinate q is equal to mq2/2. The function 
.P in (2) has the meaning of a force divided by the 
mass m. The division by m was performed to 
simplify the formulae and we shall continue to 
call .P a "force." 

The force .P is given in (2) as the sum of an 
average force, F = ~. and a fluctuating term 
which by definition has an average value of zero: 
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qt, q, q) =0. (3) 

For the sake of simplicity, we have chosen to write 
our equations in one-dimensional form ( q is one 
coordinate). 

The dependence of the force on the coordinate 
and on the velocity can be determined experimen­
tally. One must average the action of the fluctu­
ating force in that case over some time interval 
Ty, which must be longer than the correlation 
time r 1 of the fluctuating force: Ty » r 1. The 
length of the time interval over which it is avera_ged 
has no upper bound. However, to obtain as detailed 
a phenomenological description of the system as 
possible, it is desirable to choose the smallest 
value compatible with the above-mentioned in­
equality. 

What we can measure is essentially not the ex­
act force <I> as a function of q and q, but an 
average force ~ as a function of the average 
values q and q. The tilde on top indicates here 
an average over the time Ty. for instance, 

f+T y 
""' 1 \ . q (t -f- " ) - q (t) 
q = -"-- J qdt = ~~---

JJ t y 

(4) 

Because of the condition Ty » r 1 ~ ~ is t~ same 
as F. If we wish to find out how q and q are 
connected with the instantaneous values q and q, 
we must take into account the relaxation times of 
the latter. We introduced along with r 1 the ve­
locity relaxation time 

"2~qjq~ qjF (5) 

and the coordinate relaxation time 

-r3~ Ci/!1. (6) 

Different relations are possible between the 
time constants r 1, r 2, and r 3• We consider the 
case where 

(7) 

and where we can consider phenomenological equa­
tions that correspond to a time of averaging which 
satisfies the inequalities 

(8) 

(9) 

Assume, in particular, that (7) is satisfied and the 
force relaxation time r 1 is comparable with r 2 

(10) 

If we then choose our averaging time so that r 1 

« Ty « r 3, we satisfy conditi~ns (8) and (9). 
Because of inequality (8), q is the same as q 

but q differs from the instantaneous value of q. 

The trajectory in phase space is no longer a Markov 
process. Because of (7) the q ( t) process can, 
however, be considered to be a Markov process. 
Our problem is to express its statistical character­
istics through the experimental function F ( 4', q), 
which is supposed to be known. 

Inequality (9) enables us to state that the time 
average is the same as the statistical average 

q=q (11) 

[we are considering an ensemble for which q ( t 0 ) 

= q0 ]. This average value is independent of the 
initial velocity q ( t 0 ), the influence of which van­
ishes within a period of time of the order of r 2• 

It is thus some phenomenological function of the 
coordinate, 

(12) 

Taking (11) into account we can write the phe­
nomenological equation (2) in the form 

(13) 

The function (12) can be determined from Eq. (13). 
Indeed, averaging (13) and taking (3) into account, 
we find 

v = F(v, p). 

Substituting (12) and performing the transformation 

~ = f (q) = (offoq) :0, 
we obtain the equation 

at;aq = F<f, q)/f .. (14) 

from which we can determine f(q). One can sim­
plify this with the aid of (7). To do this we take 
into account Eqs. (5) and (6) which define r 2 and 
r 3• The latter can be written 

~;-1 ~ f/q~Offoq. (15) 

According to (5) F /v is of the order of 1/T2 

for most values of v; in our case, however' it is 
of order 1/r3, [i.e., appreciably smaller, because 
of (7)] as can be seen from (14) and (15). This ex­
ceptional value must be determined from the equa­
tion 

F (:U, q) = o. (16) 

The latter states that an average velocity is set up 
in such a way that it corresponds to a zero force 
acting upon the particle. 

Turning to the dynamical equations (1), we shall 
consider instead of the variables q and p the co­
ordinate and velocity q and v = q. In that case 
Eq. (1) is transformed into 
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q = v, v = U (q, v, p', q') =- m-1aH1iJq. (17) 

Here G ( q, v, p', q') is the dynamical expression 
for the force, corresponding to the phenomenological 
expression 4>. The probability distribution density 
w = w ( q, v, p', q') changes according to the equa­
tion 

· a ) a , aH aw aH aw 
w = - dq (vw - Tv (Gw) -r (j(j' a;;'- ap· aj7 _ Aw. 

(18) 

We are especially interested in the well-defined 
initial condition q = q0 at t = t 0, which corre­
sponds to 

[W)t=l, = o (q- q0 ) W 0 (v, p', q') (19) 

(the initial distribution w0 ( v, p', q' ) does not 
play a large part since it relaxes rapidly). 

We introduce the functions 

l\7 = e"qw, 

Z(u) = ~ \VdQ = ~ e"qwdQ, 

w=lV/Z(u) 

(20) 

(21) 

(22) 

( drl = dq dv dp' dq') and ascertain their time varia­
tion. Writing (18) in the form 

e-uqw = A (e-uq\\7) 

and differentiating we get 

W = A lV + uv lV. (23) 

If we integrate this equation over v and q we get 

i (u) = uv\\7. (24) 

where 

(25) 

Differentiating w with respect to time and substi­
tuting (23) and (24), we find 

(26) 

We write the last term in (26) as a differential 
expression 

co 

- - "" 1 ( a )m ( a )n -(v-v)w= ~ m! n! -Tq -a; (~mnW). (27) 
m, n=O 

Here !3mn = !3mn( q0 ) are suitably chosen coeffi­
cients. It is shown in the Appendix that they can 
easily be expressed in terms of the correlation 
functions of the velocity fluctuations; in particular, 

Por = (v - v) 2 = k2 (0), 
co 

~ 10= (q- q) (v- v) = ~ k2 -r) d-r. (28) 
0 

Because of (27), Eq. (26) is equivalent to 

q=v+a(t), ~=G(q, v, p', q')+b(t), (29) 

where a ( t) and b ( t) are random functions with 
average values 

a= 11~10• lJ = 11~01• (30) 

and with correlation functions (for r quantities a 
and s quantities b) 

k(ria, (s) b (tJ, · · · , tr+s• qo) 

= uf3,so (t 2 - t1) ••• o (t,+s- t 1) 

(cf. reference 5). 

(31) 

Equations (29) enable us to interpret w as the 
distribution density for some new mechanical sys­
tem subjected to additional forces a and b, each 
with a steady and a fluctuating term. 

The additional forces can be included not only 
in the dynamic, but also in the phenomenological 
equations. In accordance with (29), Eqs. (13) are 
replaced by 

q = v + a(t), 
. -
v = F (v, q) + ~ (t) + b (t), (32) 

We use (32) to find a new phenomenological func­
tion 

q=f(q,u), (33) 

which determines the average velocity. Averaging 
(32), we have .. - -

q = v +a, (34) 

As in the derivation of Eq. (16), we find from the 
second equation of (34) 

F(v, q) + lJ = o. (35) 

Solving with respect to v and denoting the corre­
sponding function by f1, we get 

v = fi(q, u). (36) 

Substituting (36) into the first equation of (34), we 
get the required function (33): 

q = f (q, u) = fdq. u) +a. (37) 

The function (12) is, of course, none other than a 
particular value, f ( q, 0). 

We now turn to the problem of the diffusion of 
an initial distribution of the type (19). In the first 
period, while t - t 0 ~ T2, the fluctuations of q ( t) 
are not like a Markov process. Thereafter, when 
T2 « t- t 0 « T 3 the average velocity q approaches 
the function (12), which is independent of the initial 
velocity. For those intervals of time, the fluctuat­
ing process q ( t) can at the same time be consid­
ered to be a Markov process. The distributi'on 
w ( q, q0 ), obtained from the initial distribution 
o ( q - q0), then generates a Markov transition 
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probability and characterizes completely the fluc­
tuating process. For time intervals satisfying the 
condition 

the coordinate q does not have time to change 
strongly, and we have from Eq. (33), for the 
chosen initial condition, 

q = qo + (t- to) f (qo, u). (38) 

According to what has been said above, the av­
eraging q is then done over an ensemble corre­
sponding to the included additional forces a, b, i.e., 
with the weight of w. According to (20) -- (22), 
this average can be written as 

(39) 

Because of this (38) goes over into the equation 

a In Z (u)jau = q0 + (t- t 0) f (q0 , u), (40) 

from which we can determine Z (u). When inte­
grating this we take into account the initial condi­
tion Z ( 0) = 1, which follows from (21), and we 
get 

u 

Z (u) = exp {q 0u + (t- t 0 ) ~ f (q0 , u) du}. (41) 
0 

For imagiri.ary values of the argument u = iv 
the function Z (u) is none other than the charac­
teristic function exp ( iv). The required transition 

After substituting (44) into (42) we find 

w(q, q0)=o(q-qo) 

(46) 

To obtain the stochastic equation we :rp.ust still 
substitute (46) into (43). The term w ( q, t0 ) ob­
tained after integrating with o ( q- q0 ) is shifted 
to the left-hand side and [ w ( q, t) - w ( q, t 0 ) ]/ 

( t - t 0 ) is denoted w. The result is 
00 

. "' 1 as W (q) = ~ ST (- J)s ---as [Ks (q) W (q)]. 
S=l q 

(47) 

From a mathematical point of view, the main 
result here is that the correlation functions [or, 
what is the same, the moments TJ (t1, q) ... 7J <ts• q)] 
of the random functions 7J ( t, q) in the equation 

q = t (q) + 'tj (t, q), (48) 

which is equivalent to (47), cannot be given arbi­
trarily, but are uniquely determined by the force 
function F ( q, v). 

First example. A particle experiencing nonlinear 
friction. Let a conservative force g ( q) and a non­
linear frictional force cp ( v) act upon the particle. 
The phenomenological Eq. (13) is of the form 

m; = g (q)- cp (v) + m';, q = v. (49) 

In this case 

'C;J~qcp'jg. 

probability can thus be obtained from it by a Fourier The condition for the applicability of the theory 
transformation given here is thus of the form 

w(q, q0)= i" ~ e-ivqz(iv)dv. (42) 

Knowing the transition probability one can evaluate 
how any other initial distribution w ( q0, t 0 ) will 
change. The Markov condition leads to 

mfrr' < '(u < qcp'fg. (50) 

The system with the additional forces included is 
described by the phenomenological equations 

mv = g (q) - cp (v) + m~ + mb, 

(43) Averaging these and solving the equation 

The choice of the initial moment is arbitrary; giving 
t 0 increasing values we can follow the complete 
evolution of the distribution density. 

It is convenient to consider a differential sto­
chastic equation. To get it we expand (40) in pow­
ers of t- t 0• Retaining only the first two terms 
we have 

00 
"\.l us 

Z (u) = eq,u + (t- t 0) eq,a LJ - 1 Ks (q0). (44) 
s. 

U S=l 

The function J f ( q0, u) du is here expanded in a 
0 

Maclaurin series and 

'? (v) = g (q) + mb, 

which corresponds to Eq. (35), we find 

q = a+ ~ (mb +g). 
Here 1/J is the inverse of cp ( v). According to 
(28) and (30) we then have 

a= u~JO = u (q- q) (v- v), 

In view of the fact that the velocity distribution at 
time t - t 0 » r 2 is practically the same as at 
equilibrium, i.e., a Maxwell distribution, we have 
mb = ue ( e is the temperature). 

The coefficients in (47) are evaluated from the 
(45) equations 
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f (q, u) = u~1o + ~(u8 +g); K1 =~(g), 

K2 = ~1o + fW (g), Kn = en-J~<n-l) (g) (n = 3, 4, ..• ). 
(51) 

To evaluate (310 it is expedient to take into ac­
count that 

(q- q) (v- v) = f d (q- {/) 2 I dt = f d (K2 t) I dt 

'and, thus, (310 = % K2• 

Taking (37) and (45) into account we get 

K2 = 28cj/ (g)= 28 I cp' (KJ). (52) 

In the particular case where the frictional function 
is linear [ qJ ( v) = (3v ] the relation given here gives 
the usual expressions 

Ka= · · · = 0. 

Second example. The mechanical example con-

tude as (f/V)2L/C) is small because of theine­
quality (53). This enables us to expand (54) in a 
power series in I. Restricting ourselves to the 
first term we have 

where 
00 

1 ( L \,'1• \" { L } Req= V21t 6) ) V(/)/exp - 28 / 2 dl (55) 
-00 

is the equivalent linear resistance by which we can 
replace the given nonlinear resistance. 

The consideration given here was restricted by 
the condition of fast relaxation of the velocity: T2 

« T3• It would be of great interest to get rid of 
this restriction. 

The author expresses his gratitude to Acade­
mician M. A. Leontovich and Professor Ya. P. 

sidered is analogous to an electrical circuit contain- Terletskil for their interest in the present paper 
ing a nonlinear resistance and a nonlinear capaci- and for a number of helpful discussions. 
tance (Figure). q is then the charge on the capaci-

tance and q = I the current in the circuit, while 
the induction L plays the role of the mass. The 
relaxation times are in this case equal to 

[R = dVR/di, C = Vc/q = g(q)/q]. We can use 
for this circuit Eq. (46) with the values of the co­
efficients from (51), if 

Ll R<.RC (53) 

and if qJ (I) is taken to mean the function that de­
scribes the dependence of the average potential 
across the resistance on the average current after 
a time Ty » L/R 

VR =rp(l). 

When the dependence of the voltage on the in­
stantaneous current 

(which corresponds to T 1 « Ty « T2 ) is known 
from experiments, we can find the function qJ 

corresponding to longer averaging times from 
the formula 

APPENDIX 

We shall find the coefficients f3mn of the ex­
pansion (27). We multiply both sides of this equa­
tion by E = exp [ ( q- q) X + ( v- v) y] and inte­
grate over q and v. The integral J<v -v) Ewdqdv 
can be written in the form o® (x, y)/oy, where 

8 (x, y) == ~ Ew dq du 

is the two-dimensional characteristic function of 
the quantities q- q and v - v. Further integra­
tions by parts give 

(27) is thus equivalent to the equation 

ae xmyn a ln 8 xmyn 
ay; = 8E mlnl ~mn or ---a!f = E mlnl ~mn· 

At the same time, the two-dimensional character­
istic function can, as is well known, be expressed 
in terms of the cumulants kmn corresponding to 
the random functions q - q, v - v by the equation 

Equating the last two equations we find 

~mn = kmn+l• 

cp (l) = Y L I 2rr8 ~ V (/) exp {- 2~ (/- l) 2} d!. (54) If we know the ( m + p) th velocity correlation 

In the region of stationary fluctuations the quan­
tity i2L/® (which is of the same order of magni-

function 
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we can, by integrating, obtain the cumulant 
t 

kmp = ~ · · · ~ k(m+P>:~ (tl,. •. , lm, t, • .. t) dtl• •. dtm. 

In particular, we find for the coefficients !310 and 
/3 01 (which are respectively equal to k11 , k02 ) that 
they are expressed in terms of k2 ( T) = k<2 >v<t , t + T) 

by Eqs. (28). 
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