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We consider magnetohydrodynamic waves which arise when a piston moves in a perfectly 
conducting medium in the presence of a magnetic field. If the transverse velocity com­
ponent of the piston exceeds the velocity of sound in the undisturbed medium, then a mag­
netic field is generated; in this case, the magnetic pressure becomes comparable with the 
hydrostatic pressure. At supersonic velocities, a vacuum is formed between the piston 
and the medium (cavitation). Compared with ordinary hydrodynamics, additional cases of 
cavitation appear when the piston moves with supersonic velocity in the direction perpen­
dicular to the normal, and also when the piston moves in, if the angle between its velocity 
vector and the normal to its surface exceeds 70° (for an ideal gas with y = 5/3 ). Increase 
of the piston velocity component perpendicular to the normal decreases the drag. When 
cavitation occurs, the drag is four times less than in the case of motion of the piston in the 
direction normal to its surface. 

I: INTRODUCTION 

THE motion of a magnetohydrodynamic medium 
under the action of an ideally conducting piston 
moving in it with constant velocity was considered 
by Bazer1 (for a piston moving perpendicularly to 
the normal, and in a longitudinal magnetic field), 
by Lyubarskil and Polovin2 (for motion of the 
piston along the normal), and by I. Akhiezer and 
Polovin3 (for subsonic velocities of the piston). 
The special case of the problem of a piston in the 
absence of a longitudinal magnetic field was con­
sidered by Golitsyn.4 

In the present paper we consider the problem 
of a piston in the case of an arbitrary direction of 
the magnetic field and for an arbitrary (constant) 
piston velocity. It is also assumed that the unper­
turbed magnetic field is small, so that the Alfven 
velocity is 

U = HJV4rrp ~ c, (1.1) 

where c = ..Jyp/ p is the velocity of sound (the 
medium satisfies the equation of state of an ideal 
gas with an adiabatic exponent y). The left side 
of the medium is bounded by an ideally conducting 
piston located in the plane x = 0. 

At the moment t = 0, the piston begins to move 
with constant velocity u. Since the problem in­
volves no parameter of the dimensionality of length, 
the motion of the medium will be self-similar. 
This means that all quantities depend only on the 

ratio x/t. Here the motion of the medium is char­
acterized by a succession of shock and self-simi­
lar waves traveling one after the other. It is 
important to note that the problem of finding these 
waves has a unique solution only if the existence 
of evolutionary shock waves is assumed. 5•6 

Only in certain special cases, when slow shock 
waves are absent, can the piston problem be solved 
without account of the evolution condition. (This 
is connected with the fact that fast shock waves 
are always evolutionary.) Precisely this case 
has been considered by Bazer .1 

The impossibility of the existence of nonevolu­
tionary shock waves in magnetohydrodynamics* 
was shown by Akhiezer, Lyubarskil and Polo­
vin,9•10 by Kontorovich, 11 and by Syrovat-1skil.12 

There are three types of evolutionary discon­
tinuities that move relative to the fluid- fast and 
slow shock waves and Alfven discontinuities. 
Moreover, there are two types of continuous so­
lutions - fast and slow self-similar magneto­
acoustic waves.13•14 

Shock waves are compression waves, 15- 17 while 
3elf-similar waves are rarefaction waves .14·• 18 •19 

The velocities of these waves are such that only 
the fast waves (shock or self-similar) can go 
ahead, followed by the Alfven discontinuity, and, 
finally, by the slow waves (shock or self-similar). 
If it is also taken into account that several of these 

*In ordinary hydrodynamics, these ideas were first advanced 
by Landau and Lifshitz7 and by Courant and Friedrichs.• 
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waves can exist at the same time, then a large 
number of qualitatively different motions of the 
medium are realizable for various piston velocities. 

The following boundary conditions are satisfied 
on the surface of an ideally conducting piston: 
Vx = ux, vy = uy, Vz = Uz, where v is the ve­
locity of medium and u is the velocity of piston. 

For sufficiently large amplitude of the rare­
faction wave, the density of the medium in back of 
the wave vanishes -cavitation sets in. In this case 
the boundary conditions 

P = 0, Hx (uy -vy)- Hy"(ux- Vx) = 0, 

(1.2) 

are satisfied on the boundary with the vacuum. 
We shall limit ourselves to the most interesting 

case, in which the magnetic field, the velocity of 
the piston, and the normal to its surface lie in a 
single plane (the xy plane). The values of Vz 
and Hz will be equal to zero in this case not only 
in the undisturbed medium, but also in all the re­
sultant waves. Therefore, the Alfven discontinuity 
can rotate the magnetic field only by 180 o. We 
shall set the undisturbed velocity of the medium 
v0 equal to zero. For definiteness, we shall as­
sume that the components of the undisturbed mag­
netic field Hox and Hoy are positive. We shall 
neglect dissipative processes. 

The types of waves that are produced as the 
piston moves depend on its velocity ( ux, uy). 
This dependence is shown in the drawing (the 
abscissa and ordinate are the longitudinal and 
transverse components of the velocity of the pis­
ton, ux and uy, respectively). The letters y+ 
y-, p+, p-, and A denote respectively the 
presence of a fast and a slow shock wave, a fast 
and a slow rarefaction wave (self-similar), and 
an Alfven discontinuity. For a sufficiently large 
amplitude of the slow rarefaction wave, the density 
of the medium in back of the wave vanishes- cavi­
tation begins. In comparison with ordinary hydrody­
namics, in which cavitation sets in when the piston 
is moved out with a velocity exceeding 2c0/ ( y - 1 ) 
( c0 is the velocity of sound in the undisturbed 
medium), in magnetohydrodynamics cavitation 
sets in at lower piston velocities, provided the ve­
locity of motion of the piston in the transverse di­
rection is sufficiently large. 

If the piston moves only in the transverse di­
rection, then cavitation sets in when the piston 
velocity is 3.67 times the velocity of sound in the 
undisturbed medium (for y = 5/3; this result was 
obtained earlier by Bazer1 ). Cavitation begins 
also in the case when the piston moves into the 

I 
I'B ,y+p-s 

Waves due to the motion of a piston. The longitudinal com­
ponent of the piston velocity ux is plotted along the abscissa, 
and the transverse component uy is plotted along the ordinate. 
The letters y+, y-, p+, p-, A, and B denote the presence of 
fast and slow shock waves, fast and slow rarefaction waves, 
an Alfven discontinuity, and the formation of a vacuum. THP 
is the point of maximum rarefaction realizable in the fast self­
similar wave. 

medium and simultaneously moves in the trans­
verse direction. If the piston moves in with 
supersonic velocity, cavitation begins when the 
angle between the vector velocity of the piston and 
its normal to the surface reaches 70° ( y = 5/3). 
(We note that in this case the difference between 
the velocity of displacement of the medium -
vacuum boundary and the velocity of the piston 
is very small.) The presence of cavitation is 
marked in the drawing by the letter B. 

In contrast with the slow rarefaction wave, 
cavitation is impossible in the fast rarefaction 
wave. If the Alfven velocity in the undisturbed 
medium is much less than the velocity of sound, 
then at the maximum amplitude of the fast rare­
faction wave the Alfven velocity behind it comes 
close to the velocity of sound. The point of max­
imum rarefaction achieved in the fast self-simi­
lar wave is denoted by the letters THP in the 
drawing. It should be noted that upon satisfaction 
of the condition (1.1), the density of the medium 
at the point of maximum rarefaction will be very 
small. 

At supersonic transverse piston velocity uy, 
generation of a magnetic field takes place, i.e., 
the growth of the magnetic field from an infini­
tesimally small to finite values; in this case the 
magnetic pressure becomes comparable with the 
hydrostatic pressure or exceeds it. At super­
sonic velocities of insertion ( ux) and sliding 
( uy) of the piston, the magnetic field generated 
is directly proportional to Ux· 
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An increase in ux generally leads to an in­
crease in the amplitude of the shock wave and to 
a decrease in the amplitude of the self-similar 
wave. An exception to this rule occurs in the re­
gion y+ y- for supersonic piston velocities. 
Upon increase in the value of Ux, a redistribution 
of the amplitudes of the fast and slow shock waves 
takes place; the increase of the amplitude of the 
fast shock wave is accompanied by a certain de­
crease in the amplitude of the slow shock wave. 

2. SELF-SIMILAR WAVES 

The change in the magnetohydrodynamic quan­
tities in self-similar waves is determined by the 
differential equation first obtained by Friedrichs 
(see reference 1): 

dq± 1 (1- q+) q:, 

ds -6 1-sq~' 

c is the speed of sound, U is the Alfven velocity, 
and s = c 2 /U~ = 41T')'p/H~ is the dimensionless 
pressure; the plus and minus signs in the equations 
for q± and U± correspond to the fast and slow 
self-similar waves, respectively. 

The transverse magnetic field Hy is deter­
mined by the formula 

Hy=Hx{(1-q±)(1-sq::c)lq±}'hsignH1y, (2.2) 

where H1y is the transverse magnetic field ahead 
of the wave. 

The longitudinal and transverse components of 
the velocity of the liquid are determined by the 
differential equations 

dvxlds= cVq±!ys, (2.3) 
,--

dvy clj 1-q±. H 
-d = =f - :rs-q Sign 1Y· (2 .4) 

S jS - ± 

Equations (2.3) and (2.4) are valid only when 
the wave is propagated in the positive direction of 
the x axis and Hx > 0. The upper sign in Eqs. 
(2.4) corresponds to the fast wave, the lower to the 
slow wave. 

In the fast waves, the inequalities 

sq+ > 1, q+ > 1, sl± > 1, 

are satisfied, and in the slow waves, the in­
equalities 

sq_<,1, q_< I, sq'!_< I. 

(2.5) 

(2 .6) 

It follows from (2.1), (2.5), (2.6) that q± always 
decreases in self-similar waves. 

If the Alfven velocity is much less than the ve­
locity of sound, then q_ and q+ satisfy the rela­
tions: 

(2. 7) 

(2.8) 

Since q_ decreases, satisfaction of the inequal­
ity (2. 7) ahead of the slow wave brings about 
satisfaction of this inequality over the entire slow 
wave, although in this case the inequality (1.1) can 
be violated (because of the increase of the trans­
verse magnetic field and the decrease of the dens­
ity in the slow self-similar wave18 •19 ). In exactly 
the same way, fulfillment of the inequality (2.8) 
in front of the fast wave brings about satisfaction 
of this inequality over the entire fast wave. 

Let us now consider some limiting cases of 
self-similar waves, which we shall need in what 
follows. 

1) The slow self-similar wave in the case in 
which the inequality (2. 7) is satisfied. It follows 
from Eq. (2.1) that 

q_ = 8/ [(8 + l)sl.- sl, (2.9) 

(2.10) 

1 

0._vx = - U1x (2y)-'h ~ cr-<Y+l)/2Ydcr !VI-a/ (8 + 1), 
s,(s, (2 .11) 

1 

l'l_vy = - ~ ~ cr-<Y+1)/2Y V 1- ~ ~oa + 1) da signH1y· 

s,(s, (2 .12) 

Here LL v = v2 - v1• The index 1 refers to the 
region ahead of the wave, the index 2 to the region 
behind the wave. 

2) The slow self-similar wave; 

(2.12a) 

In this case the inequality L = 1 - q_ « 1 is 
satisfied over the entire wave. [Violation of 
(2. 7), and consequently of (1.1) takes place as a 
consequence of the change of magnetohydrody­
namic quantities in the fast wave moving ahead of 
the slow wave.] In this case the values of L, s, 
l::.._ vx. t::.._ vy are determined by the expressions 

~-= 1- q_ 

s = I - [ 1 / ( 1 - 1) l ~~I ~~=1 + C 1 I ( 1 - I), 

l'l_vx = -2cl [1- (s2 / s1)h-l)/2Y]/ (y- 1), 

(2.13) 

(2.14) 

(2.15) 
~1- --

/1 Vy = _ c1 \' 5-CY+I)/2-r -vi-;- ~ d~_ sign H1y. 
- jS(Y 1)/2Y J 1- .q_ d~-

1 ~2- (2.16) 
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The index 1 refers to the region ahead of the 
wave, the index 2 to the region behind the wave. 

3) The fast self-similar wave. 

(2.17) 

s= 1 + s0 ~+; ~~+ -r~+/(r- 1), (2.18) 

~+uX = -2C0 [1- (s1/ S2)(Y-1)/2<]/ (j- 1), (2.19) 

~ V- Co ~ts-(Y+1)/2Y"l/.1-q+ ~d~ .-(2.20) 
+ y- (Y-1)/2Y ~ v 1-sq+d~+ + 

yso ~t+ 

The index 0 refers to the region ahead of the 
wave, the index 1 to the region behind the wave. 

It follows from Eq. (2.18) that cavitation 
( s = 0) is impossible on the fast self-similar 
wave. The maximum rarefaction possible in this 
wave takes place for sq+ = 1; the corresponding 
value of ~ 1+ is 

(2 .21) 

The value of the integral (2.20) depends weakly 
on the behavior of the function under the integral 
when ~+ ~ ~ 1+. Therefore, the expression for 
D. +vy can be simplified: 

~+VY = Uoy (~:x r/Y + ~ s-(Y+1)/2Y (s-1)-(Y-1)/Yds. (2.22) 

However, Eq. (2.22) is not suitable for calcula­
tion of the derivative dv1y/dv1x in the vicinity of 
the point of maximum rarefaction (2.21). 

3. SHOCK WAVES 

1) 180° Alfven discontinuity. 
The jumps in the velocity and the magnetic 

field are determined by the expression 

~AVy = 2UlY• ~AHy = -2H1y· (3.1) 

The index 1 refers to the region ahead of the 
discontinuity. The jumps of the other quantities 
are equal to zero. 

2) Fast shock wave. 
Under condition (1.1) discontinuities will be the 

same as without a magnetic field: 

c1 = {c~ + (r - 1)2vix I 4 + [(c~ + (r- 1) 2V~x I 4)2 

+ (&- 1)2(yvix /4 + c~vix I 2) -c~J'I•}'I•, 

?1 =Po {[(c~-c~)/(r-1)1 

+ vixl2} I {[(ci- c~)/ (r-1)1-vix/2}. 

(3.2) 

(3.3) 

The index 0 refers to the region in front of the 
wave, the index 1 to the region behind the wave. 

For high-intensity shock waves, v1x »co, 
Eqs. (3.2), (3.3) take the form 

c1= vtxYr(r-1)/2, p1=po(r+1)/(r-1). (3.4) 

3) Slow shock wave. 
With the satisfaction of the inequality (1.1), the 

discontinuities of the magnetohydrodynamic quan­
tities on a slow shock wave of low intensity, 
D._p « p, are determined by the relations: 3 

~_Vx = Ulx~_pl PI• ~-P = ci~_p, 

~-Vu = U1y (1 =f V 1- 2c~~_p!Uiu pt), 

~-Hu=H1u(-1 ±Y1-2ci~_p/U~uPt). (3.5) 

The index 1 refers to the region in front of the 
wave. The same formulas are obtained also for a 
slow self-similar wave of low intensity, with the 
positive sign in front of the radical corresponding 
to the self-similar wave. In evolutionary waves, 
the transverse magnetic field Hy does not change 
sign; 17 therefore, in Eqs. (3 .5) the upper sign cor­
responds to evolutionary waves, and the lower sign 
corresponds to non-evolutionary waves. This 
means that only in evolutionary shock waves will 
the relations between the discontinuities of the 
magnetohydrodynamical quantities (in first ap­
proximation in D._p) be the same as in self­
similar waves. We shall henceforth write the 
upper sign in front of the radical for the formu­
las (3.5). 

4. SINGLE RAREFACTION WAVE 

1) Slow wave (see the lines p- and AP- in 
the drawing). 

The parametric equation of the lines p- and 
AP- has the form ( s 1 is the parameter) 

1 

Ux = -Vox (2&)-'1• ~ cr -(y+Il/2Ydcr I V 1 - cr (6 + 1) 1 ; 

s,(s, (4.1) 
1 

Uy = =f Coi-l ~ cr-(Y+l)!2Ydcr [[ 1- cr I (6 + 1)] / (1- cr) ]'/•. 
s,;s, (4.2) 

The line p- corresponds to the upper sign in 
Eq. (4 .2); the line AP- corresponds to the lower 
sign. For s 1 = 0, cavitation sets in; in this case 
the velocity of the piston is 

Ux = - U0xf (r). Uy = =f c0g (&), (4 .3) 
1 

f (&) = (2r)-'l• ~ cr-<Y+tl/2Ydcr IV 1 - cr (6 + W\ (4.4) 
0 

1 

g(r) = 1-1~ 0 -<Y+1l/2Ydcr [[I -cr /(6 + 1)1/ (1-cr)]'i•. (4.5) 

To calculate f ( -y ) and g ( -y ) , the radicals in 
Eqs. (4.4), (4.5) must be expanded in series: 

V-[ 1 1 
f(r)= 2r y-1+2(6+1)(3y-1J 

+ 8 (6 + 1)! (5y- 1) + ... J ' (4.6) 
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g(r) = ~;~(~~-=-1 ~{1;~; [ 1 - 2 (6 ~ 1J 2~ -=_11 

1 y-1 3y-1 1 

- 8 (6 + 1 )2 2y- 1 4y- 1 - ... J , (4. 7) 

where r(p) is the gamma function. For y = 5/3, 
we get 

f (&fa) = 2. 78, g (&fa) = 3.67. (4.8) 

The value of q2_ at the point where s 2 = 0 is 
given by 

(4.9) 

The magnetic field is determined by the formula 

(4.10) 

2) Slow wave with cavitation (the line of sepa­
ration between the regions p+ p- B and y+ p- B 
or p+ AP-B and y+ AP-B in the drawing). 

The equation of the line of separation has the 
form 

Ux =t= v r I 2VoxUy I Co+ [/('r)- V172 g (r) l Vox~~ 0, 
(4.11) 

The upper and lower signs correspond to the 
absence and presence of an Alfven discontinuity. 
The line in the ux, uy plane corresponding to the 
slow rarefaction wave has a kink at the point (4.3 ), 
where cavitation begins; 

before cavitation: duy I dux=+ c0 I V 0x; 

with cavitation:duy I dux= =t=V2frc0 1 V0x.(4.12) 

3) Fast rarefaction wave (the line p+ in the 
drawing). 

The parametric equation of the line p+ is de­
termined by Eqs. (2.19), (2.22), in which D.+ Vx 
= ux; D.+ vy = uy; the parameter is the quantity s 1• 

At the point ux = uy = 0 we have duy/dux 
=- UoxUoy/c~, in accord with reference 3. At the 
point of maximum rarefaction (2.21) 

_ 2c0 (I -(Y-1)/2Y) Ux - - 1 _ 1 - So , 

(4.13) 

h(r) = r('~;/)r(f) j rr('~~ 1 ). (4.14) 

For y = 5/3 we have h ( 5/3) = 3.52. 
The value of duy/ dux in the vicinity of the 

point of maximum rarefaction (2.21) cannot be de­
termined from (2.22); use must be made of the 
more exact expression (2.20), from which it fol­
lows that 

(4 .14a) 

At the point of maximum rarefaction we obtain 

duy/dux =- oo. 

4) Fast rarefaction wave with an Alfven dis­
continuity (the line p+ A in the drawing). 

The line p+ A in the plane uxuy is determined 
by parametric equations expressed in terms of the 
parameter s 1, with ux =D.+ Vx determined by 
(2.19), and uy by 

Uy = 2Vox~I+ {~ al+ y-1- ~ -=-1r ( ~o fy + !:i+Vy, 
l;o+ .O+ ' 1 (4.15) 

where D.+ vy is in turn determined by Eq. (2.22), 
or, more exactly, by Eq. (2.20). The point of max­
imum rarefaction, as before, is determined by Eqs. 
(2.21) and (4.13). At the point ux = 0, uy = 2U0y. 
we have duy/dux = U0y/c0, which coincides with 
reference 3; at the point of maximum rarefaction, 
duy/dux = + oo. 

5. A SINGLE SHOCK WAVE 

1) Slow shock wave (the lines y- and A y- in 
the drawing). 

In the uxuy plane the lines y- and A y- are 
described by the equation3 

Ux+Vox Uy(Uy-2V0 y)/2c~=O. (5.1) 

2) Fast shock wave (the line y+ in the 
drawing). 

The equation of the line y+ in the uxuy plane 
has the form 

u~ =- VoxVoyu;; {[(ci- c~) I (r- 1)]2 - u~ I 4}, (5.2) 

where c 1 is determined by (3.2), in which v1x must 
be replaced by ux. For Ux » c0, Eq. (5.2) is 
greatly simplified: 

Uy =- 4VoxVoy I (j2 - I) Ux. (5 .3) 

3) Fast shock wave with Alfven discontinuity 
(the line y+ A in the drawing). 

In the uxuy plane the line y+ A is determined 
by the equation 

Uv + VoxVoyU~ I {[(ci- c~) I (r- I )]2 

(5 .4) 

where c 1 and p1 are determined by (3.2) and (3.3) 
( v tx = ux). In the limiting case ux » c0, Eq. (5 .4) 
takes the form 

Uy + 4V0 xVoy I (12 - 1) Ux 

= 2V oy [(r + 1) I (r- I )1'1'. (5.5) 

6. TWO RAREFACTION WAVES 

1) The cavitation line p+p- or p+ AP- (the 
line of separation between the regions p+ p- and 
p+p-B or p+ AP- and p+ AP-B in the figure). 
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The equation of the cavitation line for uy: 

Juuffco';?>g(r)(Uox/co)41(5-'J has the form 

_ 2c0 2 I uy I , [cog(')') Jl/(Y-1) 
Ux-- 1 _ 1 + 1 _ 1 g(')') -0oxf(r) 1"U;T · (6 .1 ) 

For iuyl close to h(y)U0y(U0x/c0 )1/'Y: luy 
- Uoy ( Uox/ co )1/'Y h ( y) « Uox ( U0x/ co) - 1/'Y, the 
equation of the cavitation lines has the form 

Ux= -2co/(r-1). (6.1a) 

2) Line of separation between the regions p+ p­
and p+Ap-. 

From qualitative considerations of the topologi­
cal structure of the regions in the drawing, given 
in reference 3, it follows that the quantity uy is 
determined on the line of separation between the 
regions p+ p- and p+ AP- as the maximum ve­
locity of the medium, v2y. obtained for a given 
value of Ux by means of two rarefaction waves 
( p+ and p- ) . In this case the wave p+ passes 
through the point of maximum rarefaction (2.21). 

The equation of the line of separation has the 
form 

Uy = Uoy (Vox I c0) 11Y h (r). (6 .2) 

The transverse magnetic field H2y vanishes on 
the line of separation. At the point of intersection 
of the lines of separation of regions p+ p- and 
p+ AP- with the cavitation lines, s 2 vanishes; at 
this point ux = ~ 2c0/(y - 1 ). 

3) The line of separation between the regions 
p+p-B and p+ AP-B. 

The equation of the line of separation follows 
from (1.2): 

(6 .3) 

7. TWO SHOCK WAVES 

The value of uy on the line of separation be­
tween the regions y+ y- and y+ A Y- is deter­
mined as the maximum value of v2y obtained in 
the waves y+y- (for a given value of ux), or as 
the minimum value of v2y obtained in the waves 
y+ A y-. The problem of the motion of the mag­
netohydrodynamic medium has a unique solution 
only when max v2yl y+y- = min v2y I y+Ay-. In 
satisfying these relations it is necessary to ex­
clude from consideration non-evolutionary shock 
waves. Since the distance between the lines y+ 
and y+ A is small in comparison with the velocity 
of sound, the slow shock wave will have a small 
amplitude. We can therefore make use of (3.5). 
The equation of the line of separation between the 
regions y+y- and y+ A y- has the form 

uu+ UoxUouU~I{[(ci-c~)l(r -1)] 2 

- (u! I 4)} = Uou ( P1 / Po)'1', (7.1) 

where the values of c1 and p1 are determined 
by Eqs. (3.2) and (3.3). For ux » c0, Eq. (7.1) is 
simplified: 

(7 .1a) 

The region y+y- is bounded below in the drawing 
by the line y+, determined for ux » c0 by Eq. 
(5 .3), on which the amplitude of the slow shock 
wave y- vanishes. Since the value of Uy deter­
mined by Eq. (5.3) is an increasing function of ux, 
an increase in the longitudinal velocity of the pis­
ton ux for fixed transverse velocity uy brings 
about a decrease in the amplitude of a slow shock 
wave. In this case, of course, the amplitude of the 
fast shock wave increases, for as the piston ve­
locity increases the magnetic field begins to play 
a smaller role, and in the limiting case ux/ c0 - oo 

the shock waves become the same as in the ab­
sence of a magnetic field. In this case the ampli­
tude of the slow wave for U0 « c0 tends to zero. 

8. COMBINATION OF SHOCK WAVES AND 
RAREFACTION WAVES 

1) Fast shock wave and slow self-similar wave 
without cavitation (regions y+ p- and y+ AP- in 
in the drawing). 

The value of s 2 on the surface of the piston, 
for given ux and uy, is determined from the 
relation 

1 

Uu==Fc1r-1 ~ cr-(Y+Il/2' {[1-cr/(9+I)l/(l-cr)}'1•dcr, 

s,js, (8.1) 

where c1 is determined by Eq. (3.2), in which we 
set v1x = ux; p1 and H2y are determined by Eqs. 
(3.3) and (2.10); s 1 = s0 (ctfc0) 2'Y/<'Y- 1>. The up­
per sign in Eq. (8.1) corresponds to the region 
y+ p-, the lower to the region y+ AP- . 

2) Fast shock wave and self-similar wave on 
the cavitation line (the line separating the re­
gions y+ p- and y+ p- B, and also y+ AP- and 
y+ AP- B in the drawing). 

The transverse velocity of the piston is deter­
mined by the relation Uy = 'f g( y) c 1, where c1 is 
determined by Eq. (3 .2) ( v 1x = u x). For Ux = 0, 
we obtain the formula of Bazer:1 uy = 'f g ( y) c0 

~ '!'3.67 c0 for y = 5/3. The slope of the cavita­
tion line at ux = 0 is determined by duy/dux 
= 'f (y- 1)/g(y)/2 R: 'f 1.2 for y = 5/3, and for 
ux » c0 by the expression duy/ dux = ± g ( y) [y ( y 
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- 1 )/2]1/2 ~ =F 2.7 ~±tan 70° for y = 5/3. The 
transverse magnetic field on the boundary with 
the piston is equal to H2y = ± (2/y >% ( 47TPo >% co. 

The upper sign in the above formulas corre­
sponds to the absence of an Alfven discontinuity, 
the lower sign corresponds to the combination 
y+ AP-. 

3) Strong shock wave and weak self-similar 
wave with cavitation (the regions y+p-B and 
y+ AP- B in the drawing). 

For a given ux and uy. the velocity of the 
medium v2x on the voundary with the piston or 
with the vacuum (in the case of cavitation) is 
determined by the relation 

vt =ux+(ri2)'1•(Ulx/cl)[[uul-clg(r)], (8.1a) 

where U1x = Hx ( 47TP1 )-1/ 2, p1 = Po (ctfco)2 /< Y - 1>, 

and c1 is expressed in terms of v1x with the 
aid of Eq. (3.2); in turn, v1x and v2x are re-
lated by v1x = v2x + U1xf(y). Solving the result­
ant equation for v2x, we find all the remaining 
magnetohydrodynamical quantities. In the par­
ticular case of shock waves of large amplitude 
( c 1 » c0 ) in the presence of cavitation, we find 

V2x =-} {ux- Uoxf (r) [(r- 1) I (r + 1)]'1' 

- Uoxg(r)[r(r -1)12 (r+ 1)]'1'} 

+ {+ u; +-} Uoxuxf (r) [(r- 1)/(r + 1)]'1' 

- Uoxuxg (y)-[y (T- I) I 2 (y + 1)]'1' 

+ Vox[uu!(r-l)-'1·f·. (8 .2) 

H2y=-V2x[47tp0 (r+ 1)]'1'signu. (8.3) 
For ux = 0, Eqs. (8.2) and (8.3) go over into 

the formulas obtained by Bazer .1 

If the longitudinal velocity of the piston is not 
small, Uoxl uy I « u~, it follows from Eq. (8 .2) 
that the velocities v2x and ux are close to one 
another: 

V2x- Ux = Uox ('!' + 1)-'l•u;-1 {[ Uy [- [T (y -I)/ 2]'1.' g ('!') Ux}. 
(8 .3a) 

In this case the generated magnetic field is pro­
portional to the longitudinal velocity of the piston 

(8.3b) 

9. RESISTANCE FORCE 

The relations obtained make it possible to de­
termine the resistance force F produced when 
the piston moves uniformly with velocity (ux, uy ). 
This force consists of two components: a longi­
tudinal component F x• the drag, and a transverse 
component Fy, the lifting force. We limit our-

selves to the case of a fast shock wave of high am­
plitude, accompanied by a slow rarefaction wave. 

The force acting on a certain element of area 
is none other than the momentum flux through 
this element. Making use of Eq. (51.8) of Landau 
and Lifshitz20 for the momentum flux density 
tensor, we obtain for the most interesting case, 
u » c0 and Uox I uy I » u~. an expression for the 
drag, 

+ 1 ' 2ol/Y ) 
-Fx=~·pou;( 7 _:_ 1 +I, (9.1) 

where the quantity a2 is determined from the 
equality 

1 ~ 
~ 0 -<Y+l)/2Y {[1- 6 ~ 1]/ (1-a)} 'da 
o, 

= (_31_)';, ~I 
')'-1 ux ' 

(9 .1a) 

in the absence of cavitation; a2 = 0 in the pres­
ence of cavitation. 

The lifting force has the form 

- F y = ('!' + I) PoUxUya~/Y / (y- I) 

+Yr+ I V1-a2pPoxUxsignu .. (9.2) 

It follows from Eq. (9.1) that for a fixed value 
of ux, the drag decreases with increasing I uy I . 
The value of the drag on the cavitation line is 
(y + 1 )/( y- 1) times smaller than for luyl 
« Ux· Upon further increases I uy I , the value 
of the drag does not change. 

The author expresses his gratitude to A. I. 
Akhiezer and G. Ya. Lyubarskil for a number of 
valuable suggestions. 
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