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The collectively excited states of non-axial even-even nuclei are investigated with account
of the interaction between rotational and vibrational states.

DAVYDOV and Filippov1 have calculated the col-
lective energy levels of axially symmetric even-
even nuclei with account of the interaction between
rotational and vibrational states. The same au-
thors? also investigated the rotational energy lev-
els and the probabilities of transitions between
them for the case of non-axial nuclei. The coup-
ling between the vibrations and the rotation was
not taken into account. In the present paper we
study the collective excitations of the vibration-
rotation type in non-axial even-even nuclei.

1. ENERGY LEVELS

We shall assume that the energy of the vibra-
tions in the parameter of axial asymmetry, v, is
much larger than the energies of the collective ro-
tation and of the vibrations in B. y can then be re-
garded as constant. According to the collective
model of Bohr, the energy of the nucleus is made
up of the following terms:

E,=LBir+ 104 A3+ S My2L,. @)
x

The first two terms represent the kinetic and po-
tential energy of the 8 oscillations of the nucleus,
respectively; AR is the interaction of the external
nucleons with the nuclear core, and is in first ap-
proximation proportional to B; the last term rep-
resents the energy of rotation of the nucleus, where
M, is the projection of the classical angular mo-
mentum on the y axis, and Iy is the moment of
inertia, which is given by the expression

Iy, = 4BB?sin? (Y — 2my/3).

In going from Eq. (1) to the corresponding
quantum-mechanical equation, we have

HY =E,¥, (2

where
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J x 1s the projection of the total angular momen-
tum of the nucleus on the x axis, and jx(n) is
the projection of the angular momentum of the
n-th external nucleon.

The volume element in the space (B, 6i) is
written as

dv= GB3sin0dB d30 4)

(G is a constant).

In the adiabatic approximation with respect to
the one-nucleon states we can average the Hamil-
tonian operator (3) over the states of the external
nucleons. If I is the sum of the spins of the ex-
ternal nucleons and  is its projection on the
axis fixed in the nucleus, we can use the conditions
of symmetry to obtain the wave function of the ex-
ternal nucleons in the form

Vo= 0,y (0 +(—1' @, _), ®)
1,Q

where © takes on only even values. The average
value of the operator of the rotational energy is
equal to

(¥alL| Woy=h?D/6BB* + S\ h2T5/21,,
X
WD/6BB? = 3, (*/21) < al (X Jx (m))*| ¥ad,
so that, using Eq. (5),

(¥a| 3ix(m)] ¥a>=0.

We shall regard h2D/6BB% as being included in
the effective potential energy. Then the operator
of the energy of rotation is ZXD ﬁ2J§( / 2Iy. We seek

the solution of Eq. (2) in the form of a product of
the wave functions for the B oscillations (¥g) and

1174



COLLECTIVE EXCITATIONS OF NON-AXIAL EVEN-EVEN NUCLEI

for the collective rotation (¥pot).
have

For fixed B we

w2
2 l rot=

32~
43,52 SJa ‘Ifrot’

(6)
J is the total angular momentum, and A is the
number of the solution for a given J. The quanti-
ties E'Jh were obtained by Davydov and Filippov?
using the symmetry conditioas for ¥pyot. With the
help of their data we write Eq. (2) in the form

B2 1 [0 ,
{ 2B 136 63 u CB + 14 (ﬁ) e 4852 J;} ‘FIB EOIFB»
V' (B) = CB*2 + AR + #’D/6B3*. (7)

Substituting the value ¥g=Ug(8)/¥% in Eq. (7),
we obtain the equation

{'Iid2

2Bdﬁ2+v(ﬁ) }UJA——EUJA,

43{52 En

where the quantity
V(3)
reaches a minimum in the point

8, = — A/C -+ h®D/3BCB} 4 3h*/4BCB.

— V' (3) + 3h%/8B32

Expanding V (B8) in a series in terms of By, we
find

W2 d2 C h2 ~
{ 2Bdﬁ2+ - (p~p0)2+meJl—
e=E,—V(@,), Co,=C-k*D/B3;+ 9n*4BB}.

e} Up =0,
(8)

Equation (8) agrees with that obtained by Davy-
dov and Filippov,1 except that J(J+1) is re-
placed by %,25;\. [For y— 0 we have for the
lowest level for a given J: 3/2 e —J(J+1)].

The energy of rotation-vibration of the nucleus
is determined by the equation

ey (IN/Fio, = (v + 1) )/ 1+ 27, /88
8 (E— 1) e, /40 (9)
where
8 =8, (BC/EA)", E3(E—1)=T,,/28%, =}/ C,/B.

The quantity v is found from the equation
Hy(—8,8) =0for & =8(1+ 2%, /8%, (10)
where

H, () = 5= 2 - “ 1“<k _”) (20)

is a Hermite function of the first kind.
The unnormalized wave function \IIB has the
form
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W =8P H, @), C=8(3/3—F.  (11)

We shall be interested only in the excitation en-
ergy Ej) = €\ — €J=¢. For large values of 6
(usually already for 6 > 3) the correction to the
energy due to the coupling of the rotation with the
B oscillations can be obtained with the help of an
expansion in terms of the small parameter 1/6%.
Then*

E,, = (1*/ 4B%) en—F () + Mep,

F = ccnst, M = const.

The quantity v in Eq. (10) runs through an in-
finite sequence of discrete values. Each branch
with J =0 has its set of levels with spins 2, 3,

4, 6, etc. If 6> 2.5, the lowest levels of the two
lowest branches split up and we obtain a vibra-
tional-rotational band (cf. reference 1).

We studied the quantities Ry (J) = Ej, /E{(2%)
as functions of R,(2) = E,(2*)/E{(2%). We con-
sidered the two lowest levels 4%, the first level 6%,
and the level 3* corresponding to the first band,
and also the level 0* of the second band. The re-
sults of the calculations for Ry(6) and R(4)
are shown in Figs. 1 and 2. The points with 6 = 0,
1, 2, 3, 4, and « and with y = 10, 15, 22.5, and 30°
are joined by curves. The curve with 6 = © cor-
responds to the absence of the coupling between the
rotation and the B oscillations [the excitation of
the B oscillations is infinitely high as compared
with E;(2%)]. It should be noted that R (3) varies
little for a given Ry(2), i.e., the equality E;(2%)
+ Eo(2%) ~ E (3*) is approximately conserved.

£(4)

!
4 8 1
FIG. 1

&)

*An empirical formula of this form (with M = 0) was pro-
posed by Malman and Kerman (preprint) for the comparison of
the theory of Davydov and Filippov? and of Davydov and Ros-
tovskii® with the experimental data.
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FIG. 2
The curves with small ¢ lie below the curves
with larger 6 for all levels; therefore, R)(J)
decreases if the coupling between the oscillations
and the rotation is included.

2. PROBABILITIES OF QUADRUPOLE TRANSI-
TIONS

The expression for the reduced probability for
a quadrupole transition between the states JA and
J’A’ has the form

B(E2; I —> J'\)

5 JNmged A A JAMypI Ay 19
= T6n @2J+1) Z I (Frot mlFB T Qa | Wrot IFB )l“’
: M, mu

Qu=€Qy & (Dlocost + = Dl DL_) sin),

Qo=— ZR%,. (12)

V5n
We rewrite Eq. (12) in the form

B(E2; J\—J'N) =B (E2;JN—J'\') Bo® | <IN |B] A2,

(13)
where B is a quantity which was computed in ref-
erence 2. The correction factor represents the
matrix element of B/B, with respect to the func-
tions vg. Using (11) and (4), we have

GIBl
=§ U (B) U @) a8 | {S) Ui (8) dp}%{;%) Uie) dp}%. (14)
Here

U;(B) =exp(— 8 /2) Hy, C), T = (31): (B/Bo— &)
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For 6 — ~ we have vj — 0. In practice vj =0
for 6 = 2. (v has the largest value in the case
J=0. If J=0, 6=2, then v = 0.02.) For

0 = 2 the quantity HVi can be replaced by H; = 1.
Then expression (14) has a very simple form,
which leads to the ratio (6 = 2)

B (E2;22—21) B(E2;22 - 21) .

BEZ2-0 “FEznzao0’
= S - ool e
—2(2 —a))(2)' (@ as)
@ =210 + @)W by = Gk + (u)3E
dij = 2[@)78 + 7€ (16)

The subscripts 0, 1, and 2 refer to the ground state,
the lowest excited state with J = 2, and the sec-
ond excited state with J = 2, respectively.

The most abundant group of nuclei experimen-
tally has 6 ~ 4 and 10° =y = 30°. In this case
u =~ 1.015 (it varies within the limits 1.013 and
1.017 for 6 =4). For the second group 6 ~ 2
and 15° =y =30°. Here u =~ 1.2 (it varies
within the limits 1.20 and 1.23 for 6 =2). If
v—0 for fixed 6, u— 0; but this refers al-
ready to very small y. If § — «, then u—1,
as should be expected (6 — « corresponds to
the absence of coupling between the B oscilla-
tions and the rotation). The correction due to the
factor p is thus important only for nuclei with
0 ~ 2. But here (as in the case of nuclei with
0 ~ 4) the change of y on account of the coupling
between the B oscillations and the rotation plays
an incomparably greater role.

3. DISCUSSION OF THE RESULTS

The comparison of the theoretical results with
experiment will be carried out in the following
way. We determine 6 and 7y from the three
levels E{(2%), E,(2%), and E;(4%) with the help
of Fig. 1, which shows the dependence of R;(4)
on R,(2). It is here convenient to use curves with
fixed values of 6 and curves with fixed values of
v. With the help of the analogous curves computed
for the dependence of R;(6) (see Fig. 2), Ry(4),
and R,(0) on R,(2) we can find Ry(6), R,(4),
and Ry(0) from the known values of 6 and 7.
The results of the comparison with experiment
are given in Table I (see also Figs. 1 and 2). The
character of the interaction between the B oscilla-
tions and the rotation is apparently well accounted
for by the calculations.
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TABLE I. Energies of the excited states of the vibrational-
rotational type*

Nuctews | &0 | Re@ | R® | R®W | R® | R(@® | Ry |Reference
2.47 4.85
Fess 845 3.49 4.56 | 2.47 4,7 4.7 2.9 4]
3.09 6.2 5.94
2.35 3.80
Cdito 656 2.10 3.31 | 2.35 3.8 3.8 2.8 [
2.78 5.5 5.23
2.30 2.35
Cdus 556 2.18 2.30 3.8 3.7 2.7 171
2.75 5.5 5.14
3.00 | 11.68 5.61
Smisz 121.8 8.92 | 10.14 | 3.01 | 10.3 5.7 6.0 9]
3.31 | 11.3 6.80
3.02 5.84 5.52
Gdrst 123.02 | 8.10 9.17 | 3.02 9.6 5.7 6.2 [
3.30 | 10.5 6.75
3.24 | 1534 | 6.56 | ~8.09
G 89 13.01 | 14.00 | 3.24 | 14.9 6.5 13.6 | ["89]
3.32 | 15.4 6.88
3.27 | 13.35 | 6.70
Dy160 86.6 11.16 | 12414 | 3,27 | 13.2 6.6 >14 "
3.32 | 13.6 6.86
3,29 | 11.87 | 6.76 18.12
Er168 80.7 9.76 | 10.67 | 3.20 | 12.0 6.7 | >14 [710]
3.31 | 122 6.82
3.31 | 12,47 | 6.86
Erles 79.9 | 10.29 | 11,22 | 3.31 | 12.7 6.8 | >14 (1]
3.32 | 128 6.84
3.26 | 14.68
Wis2 100.9 | 12.41 | 13.20 | 3.26 | 14.0 6.6 | >14 [8]
3.32 | 14.5 6.87
3.16 7.73 | 6.33
Os186 137.2 5.60 6.63 | 3:16 7.1 6.2 1.4 | (519
3.23 8.1 6.49
3.08 6.17 7.01
Ostss 155.0 4.09 5.10 | 3,08 6.3 5.8 12,4 | [»%1)
3.15 6.7 6.14
2.95 5.14 | 5.63
Ost% 186 2.99 4.05 | 2.95 5.6 5.5 11.2 18]
3.01 5.8 5.75
2,82 5.17
Osto2 206 2.37 3.35 | 2.82 5.4 5.2 | >14 9]
2.84 5.5 5.34
2.43 3.97 2.63
Hgles 411.8 2.65 2.43 4.1 4.0 2.9 [»9]
2,92 5.6 5.53
3.30 6.86 21.15
Pu2ss 44,2 | 23.30 | 24.34 | 3.30 6.8 | >14 [l
3.33 7.00

*For each element we list in the first row the experimental values, in the
second row the theoretical values, and in the last row the values obtained when

only the rotational excitations are taken into account.

In Table II we give the ratios of the reduced
probabilities for the transitions 22 — 21 and
22 — 0. The effect of u is not accounted for
because of its smallness. Indeed, the change of
the value of y on account of the coupling between
the vibrations and the rotation plays a much larger
role. But for nuclei with 6 ~ 4 even this effect
does not change greatly the value found by Davydov
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and Filippov in reference 2 (y becomes somewhat
For nuclei with 6 ~ 2 the value of vy
becomes appreciably smaller. The experimental
data at our disposal are too inaccurate and very
sparse in the region 6 ~ 2. They do not permit
us to check the results of the theory with regard
to the transition probabilities.
In conclusion I regard it my obligation to thank

smaller).
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TABLE II. Ratio of the reduced probabilities for quadrupole
transitions from the second level 2 to the first level 2*
and from the second level 2* to the ground state

B (E2; 22 — 21) /(B (E2; 22 — 0)
Nucleus Y, degrees | <y* degrees Theory Rotation Experiment
only
Ost8 15.9 16.5 3.05 3.30 2,55 [4]
Osise 18.5 19.2 4.36 4.84 27 1l
Ost% 21.9 22.2 7.8 8.3 e W
Osi# 24.5 25 17.5 20.6 9.1 3
Wasz 11.0 11.45 1.81 1.88 159 [
Gd1t 11.85 13.9 1.94 2.38 196 0
Gd1se 10.5 11.0 1.75 1.81 17
Smist 11.42 13.25 1.87 2.42 L ﬂ]
Dy?60 11.45 11.9 1.88 1.9 2.38 2
Cdue 23.3 26.7 113 52 79 [
Hg 21.0 23.6 6.5 12.7 2 .

*Rotation only.
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