
SOVIET PHYSICS JETP VOLUME 12, NUMBER 2 FEBRUARY, 1961 

PION-NUCLEON SCATTERING AT LOW ENERGIES, I 

A. V. EFREMOV, V. A. MESHCHERYAKOV, and D. V. SHIRKOV 

Joint Institute for Nuclear Research 

Submitted to JETP editor March 18, 1960 

J. Exptl. Theoret. Phys. (U.S.S.R.) 39, 438-449 (August, 1960) 

Integral equations for rrN-scattering partial waves in the low-energy region are derived on 
the basis of the Mandelstam representation. The kernels of the equations contain the lowest 
1r1r- scattering phases. 

1. INTRODUCTION 

THE Mandelstam double dispersion representa­
tion1 for a two-particle Green's function makes it 
possible to consider the matrix elements of the in­
teraction processes corresponding to this Green's 
function as different limiting values of the same 

FIG. 1. 

analytic function of two complex variables. This - rrN and 1r1r- NN contains the amplitudes of the 
representation leads to simple dispersion relations process 1r1r- rrrr. For 1r1r scattering, to the con-
in one variable, including the usual dispersion re- trary, the system of equations will be closed. 
lations in the energy for arbitrary values of mo- Thus, the process 1r1r- 1r1r becomes very impor-
mentum transfer. Using the unitarity condition for tant in the theory of strong interactions, and serves 
the imaginary parts of the different amplitudes, we as its "starting point." 
arrive at the possibility of obtaining a system of The equations for the n-scattering process 
relations between the amplitudes of the various were obtained by Chew and Mandelstam. 3 These 
processes. equations, like the Chew-Low equations, are singu-

The unitasitycondition, which utilizes the expan- lar nonlinear integral equations. We know4 that 
sion in a complete system of intermediate states, intro- such equations have sets of solutions. Even the 
duces an infinite set of corresponding amplitudes. determination of some definite branch of these so­
Confining ourselves in the unitarity condition to the lutions is a complicated task, which can be accom­
lowest two-particle mass state, we arrive at a sys- plished only with the aid of high speed electronic 
tern of equations for the matrix elements of two- computers. At the present time, a particular "ad-
particle processes. The two-particle approxima- iabatic" solution of the Chew-Mandelstam equa-
tion does not lead to an error in the imaginary tions has been obtained, 5 with the s wave predom-
parts up to the threshold of the next mass state, inating. 
and consequently the integrated contribution of the The block nNN of Fig. 1, which describes the 
latter can be considered small in the low-energy processes 
region. This approximation can be considered as 
formulated by Chew's statement that "the behavior 
of the analytic function in a small region is deter­
mined essentially by the nearest singularities. " 2 

The program developed here yields equations 
for two-particle amplitudes in the low-energy re­
gion. It is clear that an important role is played 
here by the scattering amplitudes of the lightest 
particles. Neglecting electromagnetic effects, we 
obtain for "ordinary" strongly-interacting parti­
cles the sequence of processes shown in Fig. 1. 

The scheme of Fig. 1 denotes, for example, that 
the system of equations for the processes rrN 

I. n + N -+n' + N, 

II. n' +N->n+N, 

III. n+ n'-+N + N, 

was considered by Frazer and Fulco6 as applied to 
the reaction III. They obtained for the amplitudes 
of process Ill equations, that contain the rrN-scat­
tering amplitudes and the rrrr-scattering phase 
shifts. 

Attempts to investigate the rrrrNN block as ap­
plied to rrN scattering were undertaken by McDow­
ell. 7 He considered the analytic properties of the 
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partial amplitudes of meson-nucleon scattering* 
in the complex plane of the variable s - the square 
of the total energy of the meson + nucleon system 
[see (3.1) below] andestablishedthekinematic com­
plex singularities due to the inequality of the 
masses. These singularities make it difficult to 
obtain the integral equations. Recently, however, 
Chou Hung-Yiian (private communication) was 
able to carry the corresponding derivations through 
to conclusion and obtained a system of integral 
equations for the partial-scattering waves and for 
the process 1r1r- NN. 

In the present paper we investigate the analyti­
cal properties of the 1rN scattering amplitudes in 
the complex plane of the square of the momentum, 
variable q2, in the c.m. system for a fixed scat­
tering angle. This approach is analogous to that 
of Cini-Fubini-Stanghellini8 to the NN- NN proc­
ess. 

In the plane of the variable q2, the kinematic 
singularities have the form of a finite cut on the 
real axis and can be eliminated by considering the 
corresponding symmetrized and antisymmetrized 
expressions. 

Confining ourselves in the unitarity conditions 
for reaction III to the two-meson state, we leave 
in the 1r1r - 1r1r amplitudes only the s and p phase 
shifts. This allows us to obtain for the amplitudes 
of processes I and II an integral equation that con­
tains only the aforementioned two phase shifts o0 

and o1 for 7f7f scattering. The use of the cited 
Chew principle allows us to neglect the non-physi­
cal cuts due to reaction II and to obtain integral 
equations for the partial waves of 1rN scattering. 
Naturally, these equations can have a meaning only 
in the region of low energies. 

Section 2 contains a summary of the formulas 
for the matrix elements of processes I, II, and Ill 
in terms of the invariant coefficients of the two­
particle Green's function, and also the unitarity 
conditions for the partial waves. 

In Sec. 3 we choose the functions and the vari­
able for the analytic continuation. This continua­
tion, as well as the elimination of the kinematic 
cuts, is realized in Sec. 4. Next (Sec. 5) we ana­
lyze the nearest part of the non-physical cut of 
reaction III, by means of an approximate unitarity 
condition which contains only the s and p phase 
shifts of the 7r7f scattering. With the aid of the 
Muskhelishvili method we obtain for the amplitudes 
of 1rN scattering integral equations that contain 
integrals only over the physical regions of reac-

*McDowell actually considered the process K + N ... K + N, 
but the kinematic singularities of this process are analogous 
to those of the process rr + N ... rr + N. 

tions I and II. The 1r1r-scattering phase shifts en­
ter into the kernels of these equations. In Sec. 6 
we go over to the partial waves in the final equa­
tions. 

The foregoing brief survey of papers on the use 
of the Mandelstam representation is incomplete. 
Mention should be made of the very important paper 
by Ter-Martirosyan, 9 in which the unitarity condi­
tions in the two-particle approximation, subject to 
an imposed crossing symmetry, are used to obtain 
equations for the spectral functions of the Mandel­
starn representation. An interesting method for 
the approximate reduction of the double Mandel­
starn representation to a sum of one-dimensional 
representations was proposed by Cini and Fubini. 10 

Their technique makes it possible to simplify the 
derivation of the equations for the partial waves. 

2. MATRIX ELEMENTS, UNITARITY CONDITIONS 

The matrix elements of processes I, II, and Ill, 
described by the block 1mNN, are represented in 
the form 

<fiS-lli> 

(2.1) 

p1 and p2 are the 4-momenta of the nuclei while 
q1 and q2 are those of the mesons. The two-par­
ticle Green's function T has the following struc-
ture: 

T =A+~ (ch- q2) B, T = opp' T<+l + 2 [ '!p, v ]TH 
2 (2. 2) 

The notation in (2.1) and (2.2) is standard; the 
Feynman metric is used: q = q0y 0 - yq, 'YB = 1, and 

2 - 1 ')'a - - • 

The matrix elements uTu coincide, accurate to 
within a factor M/ 47rW ( W is the total energy of 
the process), with the 'spiral states' of Jacob and 
Wick. For the scattering process, these states 
have the form 

0 0 MA + (p0W-M 2) B 
f ++ = f --= COS 2 (f 1 + f 2) = COS 2 4n W ' 

. 0 . 0 p0A + Mq0B ( 
f+-=- f_+= sm2 (fl- f2)= sm 2 4nW • 2.3) 

Here, as in (2.6) below, the azimuth angles are as­
sumed equal to zero; e is the scattering angle in 
the c.m.s. and f1 and f2 are expressed in terms 
of the partial amplitudes: 

f1= ~ <ft.+P;+l (cos 8)- ft,-P;_ 1(cos 8)}, 
I 

f2= 2J Ut.-- ft.+) P;(cos 8), (2.4) 
I 

(2.5) 
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The spiral states for the process III will be 
(cf. reference 6) 

_ _ ~ {- pA + qM co~ B} , J++-- J __ - 8rc pO pO 

J = -J = qsinO~ B. 
+- -+ 8rc (2.6) 

Here e3 is the angle between the vectors p and q. 
The expansion in the partial waves has the form 

J++ = P~o ~ (z + f}pq)l f~PL(cos 8s). (2. 7) 
I 

l + 1 12 
J = q 'V · · (pq)l-Ifl P(l)(cos83). (2.8) 

+- .LJV/(1+1) ·-I 
l 

If we introduce into these formulas the isotopic 
indices + and -, then the summation goes only 
over even l for the + sign and over odd l for the 
-sign. 

We consider the antihermitian part of the third 
process, confining ourselves to the two-meson 
term in the sum over the complete system of func­
tions. This system can be represented in the form 

which have the following form in c.m.s. of the re­
actions I and III 

5 = M2 + fL2 + 2q2 + 2 V q2 + 1.~-z V q2 + M2, 

s = M2 + p.2- 2q2cos8- 2V q2 + i.i-2V q2 + !W, (3.2) 

t = - 2q2 (I -cos 8); 

s =- 2q~ + M2 -1.1-2 + 2p3q3 cos 8s, 

s = - 2q; + M2 -1.1-2 - 2p3q3 cos 03, 

III t = 4 (q; + fL2) = 4(p~ + M 2). 
(3.3) 

The analytic properties of the invariant scalar 
functions A(±) and B(±), introduced in (2.2), are 
described by the Mandelstam representation1 [see 
formula (2.12) of that paper]. It is important for 
what is to follow that the representations for B(±) 
contain the pole terms 

( +) - g• [!.2 
B - (s s t) = -- ± -· -- + · · · , 

' ' M 2 -s M•-s 
(3.4) 

while the representations for A(±) do not contain 
these terms. (±) q \ d" J(±) ( - . ' ImJlq.~o = 64rc2qo.) "'~q' Al'- p, p, q, 

- q') n<o.l)* (q', - q'; q,- q). 
We choose for the analytic continuation the four 

(2.9) functions <P: 

Here rr 0 and rr1 are the rrrr scattering amplitudes 
with total isotopic spin 0 and 1, respectively [ see, 
for example, formula (2.8) in the paper by Chew 
and Mandelstam3 ]. It is seen from (2.9) that J(±) 
are the amplitudes of process III, with total iso­
topic spins 0 and 1. 

We shall consider below the analytic continua­
tion of (2.9) in the non-physical region of small q2• 

In this case we can confine ourselves to the s and 
p waves in the amplitude II. Expanding (2.9) in 
partial waves and expressing the results through 
A and B, we obtain in this approximation 

Ims<-> =6V2l!f~->e-15•sino 1 • 

Im AH = l21tqp-1 cos 83 {T'1'f:!_-)- f~->} e-15• sin il1, 

Im s<+> = 0. (2.10) 

Here o0 is the s phase with J = 0 and o 1 the p 
phase for J = 1. 

3. KINEMATICS; CHOICE OF VARIABLES AND 
FUNCTIONS FOR THE ANALYTIC CONTINUA­
TION 

We introduce the ordinary invariants 

- <+> !3 s<->. <P (s, s, t) = A , rx, , , , 

rx = A<-> I (s- s), ~ = s<+> i (s- s). 

All these functions have the property 

<P (s, 5, t) = <P (s, s, t). 

(3.5) 

(3.6) 

In addition, they diminish at infinity not slower 
than A and B. Division by s - s does not intro­
duce any new singularities. 

We shall consider the functions <P as applied to 
reaction I. We fix the scattering angle as cos e 
= c, i.e., we consider the analytical properties in 
the variable q2• It is now convenient to rewrite 
(3.2) in the form 

s = s (q2) == R (q2) + D (q2) + 2K (q2), 

s = s (q2) == R (q2)- D (q2)- 2K (q2), 

t =- 2q2 (1-c), 

where 

R(q2) = M2 -+-t-'"2 + q2(I -c), D (q2) = q2(J +c), 

(3.7) 

K(q2)=V(q2+M2)(q2+i-'"2). (3.8) 

4. ELIMINATION OF THE KINEMATIC CUTS AND 
THE CAUCHY THEOREM 

s = (Pl + ql)Z, s = (Pl + q2)2, t =(PI+ p2)2, The functions <P ( s, 8, t) = <P ( q2 ) for cos e 
s + 8 + t = 2 (p.Z + M2), (3.1) = c), considered in the complex plane of q2, have 
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the following singularities: 1) a cut - oo < q2 

< - 2~-to/ ( 1 - c) = - a3, connected with the denom­
inator t' - t in the spectral formula of Mandel­
starn; 2) a cut 0 < q2 < oo due to the denominator 
s' - s; 3) a cut - 00 < q2 < - a (c) due to s' - s 

a(c)={iW I>c>:J-fM 
a2 =(M2 +:.L2 -2M1.Lc)(l-c2t 1 , t.L/M>c>-1; 

(4.1) 

4) a cut - M2 < q2 < - ~t 2 , due to the square root 
(3.8) in the dependence of ·s and s on q2• We call 
this the kinematic cut. 

In addition, the functions {3 and B(-) have poles 
connected with (3.4). 

On changing to the variable s, the kinematic 
cut - M2 < q2 < - ~t 2 gives a complex cut lying on 
a circle (see reference 7). To get rid of this cut, 
we represent <I> in the following manner 

(4.2) 

distinctly separating the irrational dependence. 
The functions <1>1 contain no irrational dependences. 
They can be determined as 

<Dl (q2) = } [<D (q2, K) + <D (qz,- K)J, (4. 3) 

<Dz (qz) = + [cD (qz, K)- cD (qz,- K)l Kl (qz). (4.4) 

Let us explain the meaning of the function 
<I> (q2, - K (q2 ). According to (3.7), we have 
<I> (q2,- K) =<I> (s*, 8*, t), with 

s* (q2) = R (qz) + D (qz) _ 2K (qz), s* (qz) 

= R (qz)- D (qz) + 2K (qz). (4.5) 

The variables s*, and 8* are given here in terms 
of the variables q2 and c of reaction I. 

The point s*, s*, t lies in the physical region 
of reaction II if ( q2, c) lies in the physical region 
of reaction I. The connection between these points 
is given by 

2-- 2M2+ p.z + q2(1 + c2)-2cK (q2) 
qz- q M2 + p.z- 2q2c + 2K (o2) 

q2 
c2 =I- 2 (1-c). (4.6) 

q2 

[for a geometrical interpretation of relations (4.6) 
see the appendix]. 

The functions <I> ( q2, - K ), considered in the 
complex plane of q2, have the following singulari­
ties: 1) a cut 0 < q2 < oo due to the denominator 
s' - s* in the spectral formula of Mandelstam; 
2) a cut - a2 < q2 < - M2 due to the same denom­
inator when c ::::: ~-t/M; 3) a cut - oo < q2 < - 2~-to/ 
( 1 - c) due to the denominator t' - t; 4) a kine-

matic cut - M2 < q2 < - ~t 2 • In addition, the func­
tions {3 and B(-) of the arguments q2 and K ( q2 ) 

have poles. 
The functions <1> 1 ( q2 ) have all the singularities 

of the functions <I>(q2, K) and <I>(q2, - K), with the 
exception of the kinematic cut. 

Writing the Cauchy formulas for these and re­
turning to the initial function <I> ( q2, K ), we obtain 

00 

.:cfl (qz, K) = ~ [lm ¢ (q'z, K (q'")) "+ (qz, q'2) 
0 

+Im<D(q'2, -·K')z_(q", q'Z)Jq'~~q' 

+ T [Im cD (q'2, K') "+ (qz, q'2) 
-co 

'2 I • 2 '2 dq'Z +Im!D(q ,-K)z_(q,q )]q'" qi 

-a(c) 
+ \ Im <D (q'z, K') "+ (q2, q'') d •z 
' J q''- q' q 

-oo 

-M' 

' 8 ( - .!:'.) \ Irn <D (q'z, ~ K') x_ (q', q'2) d •z +pole 
1 C M ~ q'' _ q' q 

terms for {3-~nd B(-). (4. 7) 

Here 

Figure 2 shows the integration domains in (4.7) 
as functions of c. It is seen from this figure that 
the cases of backward and forward scattering are 
the simplest. Thus, when c = - 1 the non-physi­
cal cut due to reaction (2) (domain II' ) goes to 
infinity, only the cut due to reaction III remains at 
q2 < 0. It can be shown that in this case the inte­
gral contains the antihermitian part of the ampli­
tude of the physical value cos e3 = - 1. 

-M-2 --

FIG. 2 

For forward scattering ( c = + 1 ), to the con­
trary, it is the cut due to reaction III that goes to 
infinity. In this case the antihermitian parts under 
the integrals over the domains II' and II" also de­
pend on the physical value cos e2 = + 1. These re­
lations coincide exactly with usual forward disper-
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sion relations in the energy variable E in the lab­
oratory system of coordinates. The integration 
domains are as listed on the table. 

I 
11 
ll' 
II" 

Domain of 
variable cf 

O,oo 
O,oo 

-oo, -M2 

-oo, -M2 

Domain of 
variable E 

5. INVESTIGATION OF THE CUT DUE TO 
REACTION III 

The second integral (4. 7) contains the antiher­
mitian part of the amplitude of reaction III in the 
non-physical region t < 4M2• We shall consider 
the quantities Im <P in this region as analytic con­
tinuations of the corresponding functions from the 
physical region t > 4M2• Their explicit expressions 
can be obtained from (2.2) by recalling that s - s 
= 4p3q3 cos e3• 

In view of the fact that in our approximation 
(only the s and p phase shifts of the 1r1r scattering 
are considered) the expressions (2.10) do not 
contain cos e3, they coincide with the numerator 
in the second integral of (4. 7). In the more gen­
eral case, when the higher-order phase shifts are 
considered, these expressions depend on cos e3 

and the following connection must be used 

2 (p3 q3) = + (s- s) = D (q2) + 2K (q2). (5.1) 

It is seen from (5.1) that cos e3 becomes com­
plex, but the numerator of the second integral in 
(4. 7) remains real. In order to connect Im <P with 
the functions <P themselves, it is necessary to 
turn to expansions of the type (2. 7) and (2.8). 

These expansions are really in the parameter 
s - s. The radius of convergence of such an ex­
pansion is determined by the singularities of the 
Mandelstam representation. The nearest singu­
larities are the poles due to the single-nucleon 
denominators. In the approximation (2.10) these 
singularities are essential only for the function 
BC-). We shall consider them later. 

The following singularities are due to the inte­
grals of the double spectral representation. It can 
be shown that these singularities do not prevent 
expansion up to 

(5.2) 

Therefore the expansions (2. 7) and (2.8) are cor­
rect only in the region (5.2). We assume that the 
terms of these expansions diminish rapidly and 
confine ourselves to the first terms. This yields 

Im a = ae-iS, sin 01 • (5.3) 

Let us turn to Eq. (4. 7) and let us compare the 
effect due to different non-physical contributions 
from the interval q' 2 < 0. Assuming henceforth a 
transition to the partial scattering amplitudes, i.e .. , 
averaging over cos e = c, we should eN:amine the 
roles of these cuts in the variable q2 independently 
of c. It follows from Fig. 2 that the nearest cut, 
beginning with the point - J.t 2, is connected with 
the reaction III. For arbitrary c, it is bounded by 
the curve t = 4J.t2• 

The use of the unitarity conditions with two 
mesons in the intermediate state allows us to take 
accurate account of this cut up to the point - 4J.t2 

(there are grounds3•6•12 for assuming that these 
relations will be true also in a certain region be­
low - 4~-t 2 ). However, as noted earlier [see (5.2) ], 
formulas (5.3) cannot be correct for values lower 
than - 2.3J.t2• Thus, it is sensible to expect that 
formulas (2.3) will enable us to take into account 
the nearest non-physical singularities in the inter­
val - 2.3 J.t 2 < q' 2 :s - J.t 2• 

It is clear that we should therefore neglect com­
pletely the contributions due to the nonphysical re­
gions II' and II", located behind - M2• The esti­
mates for the forward scattering, when regions II' 
and II" make up the entire non-physical contribu­
tion, have shown that their neglect at small ener­
gies, down to values of E on the order of 100 Mev, 
causes an error of approximately 10%. The global 
effect is expected to decrease after averaging over 
the angle. As a result we obtain the following 
equation for {3: 

3 ( 2 K)- R" 
' q ' - (M 2 --s) (M 2 - s) 

co 

__j_ _!_ \ Im"' (q'2 K') "'+ (q2.' q":l_ dg'."_ 
1 n J I"' ' q'2 _ q2 

0 

00 

_L _!_ \ Im 3 (q' 2 - K') "'- (q 2
, q'") dq' 2 • 

I 1t j 1 l q' 2 _ q2 (5.4) 
0 

The corresponding equations for A ( +) and a 
can be simplified by returning to the functions <P 1 
and <P 2• In our approximation we have Im <P 2 = 0 
and Im <P 1 = <Pie-io sino on the cut (- 2.3J.t 2, - a 3 ). 

If we consider the integrals over the domain 0, 
oo to be known functions, then the equation for <P 1 
will be a linear singular equation, which can be 
solved by Muskhelishvili' s method (see Chapter 5 
of the book by Muskhelishvili, 13 and also the paper 
by Omnes14). In our case this method reduces to 
an examination not of <P 1 ( q2 ) but of the function 
<P 1 (q2 )exp[-u(q2 )], where 
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u(q2) = _ _1_ ~a, li(--q' 2(1--c)/2-f.<2) ,2 
;; ~ q'' - q' dq ' (5.5) 

-2,31"' 

which has no singularities when q2 < 0. 
Solving the equation in this manner, we obtain 

after simple transformations 

00 

<P ( 2 K) = _1_ \ Im <PI (q'') "+ (il, q', q'') '~ 
q , 'It ~ q''- q' dq 

0 

_1_r' rm<t>ll(q''Jx_(li,q',q''l ,2 + c:.l q''-q' dq '<PJ,u=<P(qz,±K), 
u (5.6) 

z= (o, qz, q'2) = T [exp [u (q2) _ u (q'2)] ± K (q2) 1 K (q'2)]. 

(5. 7) 

We note that our approximation (5.3) is equivalent 
to the condition <1> 2 ( q2 ) = 0 when q2 < - a3• 

Let us return to the function B<-), for which the 
Mandelstam representation contains pole terms 
which make impossible an expansion in the argu­
ment s - s in the domain of the reaction III. We 
shall assume that the large values of the real parts 
of the higher partial waves fl ( l 2:: 3) in the expan­
sion (2.8) are due entirely to these pole terms. 
(Analogous considerations were used by Okun' and 
Pomeranchuk15 in an analogous analysis of the 
higher partial waves in NN scattering.) This 
enables us to write 

Im B(-l = {B(-l -.£], 2 (/:>,.- < /:>,. ) 1 )} e-;s, sin o1 • (5.8) 

Here /::,.. denotes the pole term, and < /::,.. >1 its first 
term in the expansion of the angle of reaction III, 

+l -
< A ' 1 ~·· 2M 2 -·- s -- s d () u )1 = .-- ------_- COS v3 

2 (M'- s) (!V1"- s) 
-1 

1 R (I) + 22 (I) 
= 2Z (I) In R (t)- 22 (I)' 

z (t) = V(t /4- p.2) (t I 4-M2), (5.9) 

where we choose that branch of the function < t;:,. >1 

which,is real in the physical region of reaction I. 
Carrying out the transformation with e-u, we 

obtain 

B<-l = g' (/:>,.- < /:>,. )l) 

. 1 r "+ (o, q2 , q' 2) Im Bi-l +X_ (li, q", q' 2 ) Im B~!) d fO 

-;--;;.) q''-q' q -. 
0 (5.10) 

In our approximation, the part of the function 
B(-) which is antisymmetrized in K is equal to 
the antisymmetrized part of the pole terms, i.e., 
B~-) = g2t;:,. 2• We note further that an analogous 
method of eliminating the difficulties connected 

with the poles was recently proposed by Cini and 
Fubini. 10 

6. TRANSITION TO THE PARTIAL SCATTERING 
AMPLITUDES 

In order to convert relations (5.4), (5.6), and 
(5.10) into a closed system of equations, it remains 
for us to use the unitarity relations and to go over 
to the partial scattering amplitudes. From (2.3), 
with allowance for the fact that 

s-s=2(1 +cos9)q 2 +4qopo, 

we obtain expression for the functions <1> in terms 
of the variables and amplitudes of the reaction I. 
The f~;={ which are contained therein depend on the 
arguments q2 and cos e = c, and are expressed with 
the aid of (2"4) in terms of the partial waves fz, 
which according to (2.5), have the unitarity property. 

Thus, we can go over to the partial amplitudes 
fz either from the function <1> or from Im q, 1 ( q' 2 ), 

which enter into the integral terms of the ass em­
bly (5.4), (5.6), and (5.10). In order to go over to 
fz from Im <I>II = Im <I> (q' 2, - K), we note, firstly, 
that formulas (2.3) retain their form also in the 
variables of the reaction II. For this purpose it 
is necessary only to go over in these formulas 
to the corresponding variables in the c.m.s. of the 
r~actio0n II: cos e - cos e2, q - q2, q0 - q~, and 
P - P2· On the other hand, we transform to the 
variables of reaction II in the arguments Im <I>n 
with the aid of formulas (4.6). 

From these we obtain 

cos fl2 = [2 q~ + M2 -:- ;1.2 - 2cK (q~) 

-- c:> (q~, c)]/ 2q~ (I +c), 

c-J (q~, c)= {l2q~ + 2K (qV- c (Mz + 11.2)12 

i- (I - cz) (M'- [.L')z}'/'. (6.1) 

Going over to the new integration variable q' 2 

in the integrals that contain Im <I>ir ( q' 2 ), 

q'' = [:J (q~2 , c) -T- 2c [q} + K (q~2)]- M2 - ;;.2 ] / 2 (I - c~), 

K (q'') = [2K (im + 2q}- c(i'VF + ;1. 2 - :.:::)] I 2 (I - c2), 

(6.2) 

we can represent these in the form 

ao~- lm ¢ (q'') (' ., ''') i ,., 
•. , 2 z- 6' q-' q - ( q -

q --q 
00 

=~ 
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Here <I> ( q22, c 2 ) denotes the amplitude of reaction 
II, written down in terms of the momentum q2 and 
the cosine of the scattering angle c2 in its c.m.s. 
Im <I> (q22, c2 ) is determined from (2.3)- (2.5). 
The symbol K- ( o, q2 2, c, q2 ) denotes the value of 
(5. 7) after the substitution (6.2). 

7. DISCUSSION OF THE RESULTS 

Relations (5.4), (5.6), (5.10), and (6.1)- (6.3) 
form a complete system of equations for the par­
tial waves of 1rN scattering. In the derivation we 
took accurate account of the pole terms and of the 
contribution of the 1r1r interaction up to q' 2 

= - 2.3 JJ. 2, where the four-meson contributions to 
the process 1r1r- NN and the contributions due to 
the Mandelstam double representations of the spec­
tral functions become significant. The equations 
obtained can therefore give sensible approxima­
tions only in the region of small energies, where 
we can confine ourselves to a small number of par­
tial waves. 

The equations contain the phase shifts o 0 and 
o1 for the 1r1r scattering. Since we have at present 
no direct information on these phase shifts, it is 
natural to use the obtained system of equations as 
an indirect source of information on these phase 
shifts. Of great interest here is the verification 
of the hypothesis16 that resonance exists in the 
1r1r-scattering p wave. Such a hypothesis leads to 
sensible results with respect to electromagnetic 
structure of the nucleon. 17 

We note that the procedure outlined for elimi­
nating the kinematic singularities can be used from 
any other problems in the scattering of particles 
with unequal masses, for example, for K1r and KN 
scattering. 

The authors express their gratitudes to Prof. 
Chou Hung-Yiian and N. A. Chernikov for valuable 
advice, and also to the participants of the N. N. 
Bogolyubov seminar for useful discussions. The 
authors are also grateful to Messrs. Chew, Mandel­
starn, Frazer, Ter-Martirosyan, Cini, and Fubini 
for preprints. 

APPENDIX* 

Let us explain the geometrical meaning of the 
transformation (4.6). We describe the kinematics 
of the reactions in a Lobachevskil-type velocity 
space. 18 The usual connection between the elements 
of the triangle C2 = A2 + B2 - 2AB cosy is re­
placed here by cosh C = cosh A cosh B 

*The interpretation given here was proposed by N. A. Cher­
nikov. 

-sinh A sinh B cosy. The 4-velocity p/m of the 
particle is represented by a point in this space. 

We consider a plane in velocity space, passing 
through the velocities of the particles that partici­
pate in reaction I: P 1 = ptJM, Q1 = qt/JJ. (i = 1, 2) 
(see Fig. 3). 

FIG. 3 

The point 0 (intersection of the lines p1Q1 and 
P2Q2) represents the velocity of the center of mass. 
The invariants s and t can be expressed here in 
terms of the distances P 1Q1 and Q1Q2: 

s= M2 + fl- 2 + 2Mt.L cosh P1 Qu t = 2 [.L2 (I- cosh Q1 Q2). 

In order to go over to the variable of the second 
reaction, we note that it follows from (3. 2) and 
(4.5) that ss* = ( M2 - JJ.2 )2. It follows therefore 
that s* can be represf- ,ted in the form 

s* = M2 +- 1.12 - 2 Mr.1 cosh PfQ1 • 

If we now identify Pf with the velocity of the 
initial nucleon in reaction II, and Q1 with the ve­
locity of the escaping meson in the reaction II 
-Qf, then it follows from the invariance of t that 
the point Q2 can be identified with the velocity Q~. 
Then P~ is the intersection of the segment OQ2 

with the small circle. The velocity 0' of the cen­
ter of mass of the reaction II and the scattering 
angle e2 are determined by the intersection of the 
segment P~Q 1 and Q2Pf and the angle between 
them. The momentum of reaction II is determined 
by the relation 

___, r--; 

q2 = M sinhO'P~ = !.L sinh O'Qf. 

It is seen from the figure that e2 > e, with the 
exception of the forward and backward scattering, 
when these two angles are equal, while q2 = q for 
backward scattering and is less than q for all 
other angles. 
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