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A variational principle is formulated and applied to a many-particle system with two-particle
interaction. The wave function is chosen in a form which permits exact account to be taken of
pair correlation. Equations are obtained for one- and two-particle functions in the first ap-
proximation in the correlation. It is shown that these can easily be extended to the case of

strong correlations and three-particle interactions.

The results are applied to the case of the

so-called nuclear matter. The equations obtained are compared with those of Brueckner.

1. FORMULATION OF THE VARIATIONAL
PRINCIPLE

G’REAT mathematical difficulties limit the solu-
tion of the many-body problem in its application to
atomic nuclei, in particular, in the study of infin-
itely extended nuclear matter. In this case, it is
always assumed that the methods developed for
spatially infinite systems (see, for example, refer-
ence 1) can easily be extended to the case of finite
systems.

Inasmuch as such an assumption is not self-evi-
dent, we shall from the beginning consider a sys-
tem of finite volume, consisting of N interacting
particles, and attempt to ascertain for what equi-
librium density this system will be stable relative
to spontaneous decrease in the volume. If we as-
sume the interactions among the particles of the
system to be given, then the total energy E will
depend upon the particle density distribution p (r)
and the condition for stability is written as

dE[8p (r) =0 (1)

or
3((WIAIY)—E(b¥) _ 2
59 0 @

where E is the total energy of the system.

It is evident that such a system, as for example
a stable nucleus, can exist for an infinitely long
time in the ground state, and consequently (1) and
(2) are satisfied for it. Similar relations are not
valid for excited states.

We shall now so particularize (2) that there is
a possibility of taking into account the presence of
two-particle correlations in the system. In this
case we shall assume that the total energy depends
not only on the single-particle wave functions ¢j

(Hartree-Fock), but also on the pair correlation
functions xijk, and requires that

8E[8q; =0,  OE/dxm=0 (3)

The first of these equations leads to an equation
of the Hartree-Fock type, while the second permits
us to consider direct interaction of pairs of parti-
cles and to make the Hartree-Fock method more
precise.

If many-particle forces act in the system and it
is necessary to take into account the effect of many-
particle correlations, then (1) must be written in
the form*

(4)

Detailed consideration of (4) leads to a system of
functional equations of the type (3), which repre-
sent interlocking equations for quasi-particles,
pairs, etc.

However, we note that only the relations (1) and
(2) follow from general considerations of the exis-
tence of a state which is stable relative to spontan-
eous decrease in the volume. The system (3) im-
poses a set of additional restrictions in compari-
son with (1) and (2).

2. EQUATIONS OF THE TYPE OF THE FOCK
EQUATIONS

Let us consider a system consisting of N iden-
tical fermions and limit ourselves to the case in
which the Hamiltonian of the system is described
in the following fashion:

*<F denotes summation over all occupied states and >F
over all free states.
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N N
A= _EAi"!’“% 2 Virs Vie=V (r; — ). (5)
i=1 [,h=1
We choose the wave function in the form
N N
p =N AT] @ () [T Y (s w), (6)

i=1 i<h

where A is the operator of anti-symmetrization.

Improvement of the Fock method is necessary
only in the investigation of systems in which forces
appear which are large in size and small in radius.

We assume that the presence of pair correla-
tions in the motion of the particles xjx does not
lead to the formation of bound complexes inside the
system. Inasmuch as we shall be interested pri-
marily in the explanation of the consequences fol-
lowing from the relations (1) and (2), we limit our-
selves to the case of weak correlations. Repre-
senting yjk in the form? 1 + fj}, we keep in (6)
only the terms of first order in fjj:*

N
=W ATl () (14 2 fuelrn 1)) ()
i=1 k<l

In what follows we shall write down some quali-
tative considerations in favor of a similar approxi-
mation. We note that although terms like fif;;
possibly do not play a role in the calculation of the
binding energy of such a system as an atomic nu-
cleus, they are evidently important for the deter-
mination of the wave functions of the quasi-parti-
cles ¢j.

In the variation, the following additional condi-
tions are imposed:

{0 () 0 (1) dv =,
| @, )9 () @ (1) @0 (1) (1 + fa (7, ©)) (1 £, (1, 1)) dTd?
= Cékfbln, (8)

where i, 1, f, k, n = F, and C is a normalization
factor.

The second of the conditions (8) follows from
the fact that all the levels in the ground state up to
the boundary are filled. Therefore, distortion of
the wave function of the pair ¥ik = @igk (1 + fik),
due to the account of the two-particle interaction,
can lead only to the appearance of components per-
taining to the free states in the expansion of i
in ¢4, and consequently,

*Investigation of the properties of pair correlations in the
case of nuclear matter, carried out by the Brueckner method in
the wotk of Gomes et al.,’ has shown that for pair interaction
with repulsive cores of radius 0.4 x 10~** cm y;ji depends only

on rj - ry and differs essentially from unity for r; — ry
= (1 to 1.5) x 10™* cm.
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{0100 )91 (D) @ (F) a1, 1) dedr’ =0, (9)

where k, 1, f, n = F, which also leads to the rela-
tion (8).
We introduce the notation

PO = (N1y™7* Allgx (rs), (10)
PO = (N1~ Allgy, (r1) 2 For (50 1), 1)
p<li
P& =1/,(N1y™" Allgy (rz) 2 For(rp, 1) Fij (riy 7). (12)
p<il,iLj

ij+pl
Then the energy of the system, in first order in
fik, is equal to

E = (YO | H | 9©) ++ (9O | A [p©) 4 ($© | H [ p®). (13)

However, the equations for the correlation func-
tions can be obtained only by taking into account in
the energy expression terms of second order in f
and the change of the normalization of the wave
function of the system:

WO LA ) 4 @O 7O + @ H )
L @ 190) + (1) + @ )

WO AP + @@ [ + @ |7 p)
14 (6D [ D) + @O | p@) 4 @ | p®)

(14)

Denoting @i (r) @7 (r' ) fi;(r, ') and @i (r) ¢p
x (') @z (r, r'*) by kI and 'kpl, respectively,
we write down the matrix elements of first order
in f in the form

N

(PO |H | p@) = — D) (k| Aelk)+ < D (ik|Vir| Aik), (15)
ik

k=1

(V@ |H| ) =2 (Rl — A —A; + ththlAkT)
k<l

+ D) (kpl |V + Vie| Akpl), (16)
kip<l
(90 [H] 91©) = (9 |H] p0) ", (17)

where A is as before the anti-symmetrization op-
erator, and Qg; is a projection operator with the
following property:

QuU (rr') = @r () @ (r) (kL1 U) + 2 @n (1) 2 (1) (ki | U)
i>F

+ 2 eMa ) (U + 2 @) (r)(ji|U). (18)
i>F L, j>F

In the expression for the energy the operator
QK7 is unimportant, since the matrix element in
(16) does not depend on the presence of Q. The
latter appears by virtue of the anti-symmetry of
the initial wave function and the symmetry of
/ Vik- Actually,

1,
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N N N

1

5 2V v® = A [T @u(ra) 2 Viofoq (rps 1)
ik k=1

pP<q

N
+ A H Pr (l‘k) 2 Vih fpa(rpv rq)'

k=1 i<k, p<q,
ik+pgq

(19)

The presence of the operator A permits us to
rewrite the first term of (19) in the form

N
Al (rx) 2 Qg Vg fpq (Tp, Tg)s

pP<q
which also leads to the appearance of Qg7 in (19).
The remaining matrix elements are computed and
listed in the Appendix.

Varying (14) with respect to ¢* and f*, a sys-
tem of interlocking equations can be obtained which
permits us to find ¢ and f.

We introduce the following notation: the Har-
tree-Fock Hamiltonian

HE = —A, + ngf' @, (M) V (r—r') Agw (1),
k

the Hamiltonian of Bethe-Goldstone!
H;EyC': —Ap—Ag+ Qpg V(r—r’)
+ ngf” P () V(e — 1)+ V(t'—1") Agr (1)
k

and the Hamiltonian
Hkpq = _Ak_Ap_ Aq + Qkpq(V(r_r/) + V(l’— l'”)

V=) + 2 d e ) V(1)
FVE =) V(=) Ap (),

where is the operator which projects the
function of three variables on the level k, p, g and
on the level lying outside the Fermi sphere F.

For ypq we obtain*

Hot e + {Z (k| Hrpgl A (k?q + k'_P‘;)) + compl. conj-‘}
3

+[2 (k| Vig + Vor | AR pq)

k<l

-+ compl. conj. ] = 8pg Ppg- (20)

The meaning of the different terms entering into
the equation is easily understood. The first term
is the left side of the Bethe-Goldstone equation;*
it describes the direct action of the pair pq moving
in a self-consistent field created by the remaining
particles of the system. The term in the curly
brackets takes into account the effect of the direct

*The complex-conjugate terms differ from those written out
by the fact that the cotrelation functions enter at the left; for
example, compl. conj. in the square brackets in (20) means

(R 1V 1q + Ve | Aklpg).
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interaction of the pairs pk and gk, moving in the
self-consistent field generated by the remaining
particles, on the pair pq under consideration. It
is significant that this effect is described by the
functions fpk and fig. The last term describes
the action of the remaining pairs kI on the isolated
pair pq.

If all fik = 0 except qu, then we obtain from
(20) the Bethe-Goldstone equation:4

Hxl?qG Vpg = &pgPpq- (21)

This corresponds to the fact? that the Bethe-Gold-
stone equation* can be obtained if the interaction
of the pair under discussion is considered exactly
and it is assumed that the remaining particles
move independently (in the sense of an absence of
correlation). Their effect on the pair is reduced
to the formation of a self-consistent potential.

We now consider the equation for ¢ obtained by
variation of (13) with respect to goi;:

H¥ gy + [2 (k| Hiy — enp | AkpD) + compl. conj. ]
k

+ {2 (BL|V i -+ Vi | Apkl)

k<l

+ compl. conj. } = Ep@p. (22)
The first term in (22) is the left hand side of the
usual Hartree-Fock equation, since the term in the
square brackets takes into account the effect of
direct interaction of the particles p and k moving
in a self-consistent field created by the remaining
particles. We note that, as in (20) for three parti-
cles, the effect of direct interaction in (22) for two
particles is determined by the function fkp. Fi-
nally, the last term describes the action of the
pair correlations of any two particles on the con-
sidered third particle p.

An important advantage of these equations is
the comparative ease of their generalization to the
case of the presence of three-particle forces or
congsiderable pair correlations, when it is neces-
sary to take into account some higher power of f.
Actually, it is easy to write down Eq. (20) in a
form in which generalization to the case of three-
particle potentials is trivial. In our approxima-
tion, the three-particle function has the form

Yire = Q:Qx@s (1 + fir 4 fu+ frs)- (23)
With account of this formula, we can write down
(20) in the form

*It is equivalent to the equation for the t-matrix of Brueckner
[see (29) in reference 4].
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Hbog + 21 @ | Hagg | A (brog — Do)

+ ’Z}l [(@r:1 Vo + Vior | A®pPg (s — 9102)

-+ compl. conj.] = €,y

+ (1/9;9)) %(«ppqcpk — Viog | Hipg | A9r@oq)- (24)

Introduction of three-particle interaction leads
to an evident change in the Hamiltonian HEIF ) ngG,
Hkpq- The following equation, which is necessary
for the determination of ykpq, can be written down
by analogy with (24).

Just as for (20), we write Eq. (22) in the form

HF
Hp ©p+ X (@r | How— erp | A (Prp — Pa®p))
k

+ 20 U@ | Vor + Vir | A9y (hrr — 911))

k<l

-+ compl. conj. ] = E,¢,

+ (1/9}) }k_';(wpp — Yip | Hipo— o | AQs@p)- (25)
In conclusion we note that in this section we
have actually dealt with quasi-single-particle func-
tions. Actually, in accord with (22), account of
correlations in first order leads to the appearance
of terms which depend on momentum (of the type
of the effective mass Meggf), and to the replace-
ment of the two-particle interaction V by Veff.
We shall assume that fik = fikk' Then (22) takes the
form
[_ % (A 4 A)

p_;a,ff HS“
. 2 eff, ’ ’
+ 2\ 6, )V 00 () — By 0 () =0,

1 M Q
_— = =] 2 N2 ’ d I,
i 2 s () 2oy () e

VES= Vip {A 4+ Frp A+ Afiep -+ D@1 fipl 01) A
14
+ (@119t Aftp) + (e @1 far) A + (@] 02 Afu)])

—Frp (Be+ epe) A — (B + &p2) Afrp

+ 2 (@1 Vir|fro A@r) + (90| Vir | Afep @1)]. (22a)
Hence it is clear that account of pair correlations
in finite systems leads simultaneously to mass
“‘renormalization’’ and two-particle interaction,
while, roughly speaking, Vggr/V ~ M/Mggf, in ac-
cord with the fact that introduction of the effective
mass requires a change in the depth of the poten-
tial well in the relation written down, as is well
known.
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3. NUCLEAR MATTER

An approach was developed by a number of au-
thors to the solution of the many-body problem
which is known as the Brueckner approximation,
which takes pair interactions between the particles
into account, in more exact fashion than in the
Hartree-Fock method. Let us consider the prob-
lem of the relationship of the Brueckner method to
our variational principle (22) and compare the
equations of reference 1 with those obtained in the
present work.

According to Brueckner, the expression for the
energy of a system of particles with the Hamilton-
ian (5) can be described,! after some simplifica-
tion, in the form

N
> (ik|t | Aik),

i,k=1

N
E=—2 (|Al)+4
i=1

(ik|t|lg) = (ik |V |lq) + 2 (ik[V|sp)(spl¢]lq)

s poF E,+E,—E,—E,

E;=—(1All)+ 2 (lg|t|Alg).
g<F

(26)

In the process of constructing the Brueckner
equation for finite nuclei, it is assumed that solu-
tions of the equation

s+ {1 UIM) @(r)de = Equ()  @7)
form a complete set of basis functions and the self-
consistent nonlocal potential is chosen from the
condition of vanishing of the contribution of terms
of second order in the expansion of the energy of
the system in t:

@\ U @) = 2 (ik|t|Aik).

k<F

(28)

We introduce the operator R, for which t= VR,
and denote Rgj ¢k = $jk. Then, inasmuch as

feivimenrar = 3 (e o, rie aimyav,

IF

(r, r'|t| AiR) =V (r — ') P (r, 1), (28a)

we find a set of interlocking equations [by trans-
forming in (26) to a mixed representation] which
connect the one- and two-particle functions.*

—Ag:+ 2 a7, () V (r — 1) bue (r, ) = E,

RF

(e, t) = Ap @ @)+ 3 avar

q. I>F
Pq () @ () @, (") & (')
E,+E,—E,—E,

V(" —r")gu (", £7). (29)

¥[t can be shown that the second equation of (29) coincides
with the Bethe-Goldstone equation,*
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The first equation of the set (29) is similar to
the Hartree-Fock equation, but it cannot be obtained
by the Fock variational principle from the equation
for the energy of the system.

Actually, by varying E with respect to ¢%, we
would have obtained the equation

+ 2 \ar gy )V (e — 1) (r, v)

&, (f_"’ ") 8p(r) |_
dp(r) o (r)

which differs from (29) by a term which has been
given the name ‘‘rearrangement potential’’ in the
literature.

If the wave function is determined from (30),
then the initial assumption (28) is generally vio-
lated; according to this assumption one can neg-
lect terms of second order in t and in place of
(26) there would be introduced another expression
for the total energy. Estimates of the term arising
because of the dependence of the t-matrix on the
density of nuclear matter, carried out by Brueck-
ner,® show that it is approximately equal to 10-15
Mev, and consequently it cannot be neglected.

We shall now consider to what the variational
principle (2) leads for the case of nuclear matter,
where, as follows from general considerations
connected with the absence of a singularity in the
system with the Hamiltonian (5), the correlation
functions fjk (ri, rk) depend only on the difference
rj — rg, while the quasi-single-particle functions
are plane waves. In this case, as is not difficult.to
show, we have in place of (9),

S @, (1) @; (r) fu(r, r')dt =0,

Eiq)iv (30)

(31)

and the action of the projection operator on a func-
tion depending on the difference in the coordinates
is now determined by the relation

QuW(r —r') = @u(r) @i (') (RL| W) + 20 @u(r) @ (') (5] | W),
0L, J>F (32)

which takes the place of (18).

The relation (31)shows that the matrix element
corresponding to graphs of the type of Fig. 1 with
free ends, corresponding to correlation functions,*
do not make a contribution, in the case of nuclear
matter, to the expression for the total energy of
the system. The latter, in accord with (15), (16),
and (17), is equal to

*A description of graphical techniques is given in the Ap-
pendix.
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E=—(k|A|k) + D) [(ik|Vi| Aik) + (ik|Vir| %) +c. c.).
i<k (33)

FIG. 1

This expression is essentially in agreement with
(26) if we take into account (28a).

From (15), (16), (17), and (33) we find equations
for ¢; and ;i which we write in a form suitable
for comparison with (29):

— A+ ) @ () [V — 1) (L (s ©0) | At (r,1)

k<F

= Ei(Pi, (34)
BG ‘ —
Hix Pir = eixpin — 2 {(p Vi | Apik)
P
+ (0| Vio| Apik) + c. c. ). (35)

Hugenholtz® has shown that the Brueckner me-
thod is valid in the approximation of small particle
distribution density in the system if a number of
assumptions are made whose validity is question-
able. We have made use of the assumption of the
smallness of the correlation functions. This is ob-
viously equivalent to the approximation of low den-
sity,* inasmuch as the latter reduces to elimina-
tion of the possibility of simultaneous direct action
of more than two particles.

However, it is seen that even in the approxima-
tion under consideration for wave functions of
pairs an equation is obtained which differs some-
what from (21) [it can be shown that (21) is equiv-
alent to (29)]. The complementary terms in (35),
in comparison with (21), have a very clear physical
meaning; for example, the first term in the curly
brackets describes the change of the self-consist-
ent field acting on the particle i as a result of cor-
relations between the moving particles k and p.

It seems to us that the form of Eq. (35) strength-
ens the validity of the doubts raised by Hugen-
holtz,% 7 inasmuch as there are no very weighty
arguments for the elimination of the additional
terms in (35), except for, in our view, not very
convincing general remarks which reduce

*If we denote the momentum of the Fermi system by kg and
the effective radius of the two-particle interaction by r,, then
by the approximation of low density is understood an approxi-
mation which is valid for kgr, < 1.
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to the fact that, inasmuch as the wave function of
the pair ik differs markedly from the product of
one-particle functions only at small values of r

— r' (see reference 3), the remaining particles act
on the given pair as free particles and, conse-
quently, the term in the curly brackets in (35)
should be thrown out.

Comparison of (35), (20), and (21) shows that the
method developed by Brueckner is valid only for
spatially infinite systems and the application of it
to finite systems requires not only the replacement
of quasi-one-particle functions by functions of fin-
ite systems (oscillator and so forth, as was done,
for example by Banerjee and Roy,® and by Eden and
Emery®) but also an important change in the funda-
mental equations —the substitution of (34) and (35)
for (20) and (22).

4. SATURATION OF NUCLEAR FORCES AND THE
VARIATIONAL PRINCIPLE (2)

It is known from experiment that the energy en-
tering into a single nucleon in the nucleus Egyy and
the mean density of nuclear matter pgyy do not de-
pend on the number of nucleons in the nucleus N
and are equal to 8 Mev and 2 x 10%® em ™3, respec-
tively. For nuclear matter, by virtue of the infinite
volume of the system Q, we have as Q — «*

oE { OE ap 1

av __ 1 ""av av __ 1
oN T Q op -0, N T Q
(p = pav= N/Q).

If the interaction between the particles is given,
then E = E (p) and for a fixed number of particles
we have for the ground state

oE

o =
that is, 0Egy/9p = 0 and 9Egay /8N = 0 not only
when Q — . It is thus seen that the requirement
9Eg4yv/9p = 0, which usually figures in researches
on nuclear matter, follows from the condition for
the existence of a stable configuration of nuclear
matter which is distributed over all space with the
same density. This requirement for nuclear mat-
ter coincides with the experimental observed in-
dependence of Eyy on the number of nucleons in
the nucleus.

We note that the variational principle (2) does
not guarantee saturation of nuclear forces and
density, for finite systems, in the sense of inde-
pendence of Egy and pyy of the number of nucleons
in the nucleus. The satisfaction of (2) speaks only

_po@

(36)

*The density of nuclear matter is equal to the mean density
of finite nuclei.
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of the existence of a stable state of the system with
a finite number of particles in a spatially limited
volume.

For example, (2) can be valid also for forces
entering into the ‘‘collapse’ (contraction) of
nuclei. Satisfaction of the same conditions
8Eay /0N ~ 0 and 9p4y /0N ~ 0 depends on the
specific character of the nuclear forces.

CONCLUSION

The reliability of the approximation of weak cor-
relation used by us depends on how the forces act
between the nucleons in the nucleus. Data on nu-
cleon-nucleon scattering in the range from 2 to
300 Mev can be interpreted with the aid of various
potentials: the potentials of Signel and Marshak,
of Gammel-Christian-Teller, of Gammel-Teller.
The latter is widely used in the researches of
Brueckner and his co-workers. The characteristic
of this potential lies in the introduction of infinitely
strong repulsions at small distances (r = 0.5
x 10713 ¢m). In the present research, we have
essentially limited ourselves to the qualitative side
of the problem, not touching on the possibility of
the use of Eqgs. (21), (22), (33), and (34) for calcu-
lation of the ground state of a system of nucleons
interacting, for example, through a Gammel-Teller
potential. A more detailed investigation of the re-
sultant equations, and also a concrete calculation
will be given in a subsequent paper.

Moreover, we have assumed from the beginning
that pair correlations do not lead to the formation
of bound states. Bound states, for example, in in-
finite nuclear matter, are characterized by the
fact that not f(ry — 1ry), but x (r;y —ry) — 0 for
ry — ry — . Therefore, account of bound pairs,
say in the region of the Fermi surface, would have
required for the model under consideration the use
of the correlation functions y and not f.

The impression can be created that the super-
position of a large number of conditions 6E/dyik
= 0 makes the system redefined. However, if we
assume approximately that all correlation func-
tions are identical, then in place of N(N — 1)
there will be only a single additional condition, and
the equations (21), (22), (33), (34) are essentially
unchanged. One of the achievements of the method
considered is the ease of generalization to the case
of strong correlations, many-particle interactions
(24) and (25) of systems composed of particles of
several sorts, o, 3, ..., etec.

In the latter case, it is necessary to require

8E[8pa— E[dps=... =0,  OE/dq@=8E/d¢®=...=0,
SE [y, =8E /0y ®)= ... =0, 37
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in place of (1) and (3). Violation of (37) in the
ground state of atomic nuclei leads to spontaneous
conversion —B%*, o decays, and fission.

In conclusion we note that the application of the
variational principle (2) to boson systems with two-
and many-particle interactions makes it possible
to obtain equations for them of the type (20), (22),
(24) and (25).

I take it my pleasant duty to express my deep
gratitude to Professor L. A. Sliv for numerous
discussions and valuable remarks, and also to G.
M. Sklyarevskii and B. L. Birbrair for discussion
of the results.

APPENDIX
For the matrix element ()| H|y (1)), we find

(W A [9®) = — ) (pq| Ap+ Ag| Apg)

pP<q

— X\ (K| Al R)(pq 1A Pg)
p<q
k#p.q

— 2 (kpq| At Dp+Dg| ARp )

p<q,k

— 2 (KPq|dit Dyt AJAkpq)
k,pq

— > (i|Ali)kpq| Akpg)— D) (i|A|i)kpq| Akpq)
i#p,q.k i+p,q,k
P<q,k k,p<q

+ ) (04| Vea | APg) + 2 (ik|Vas| Aik)(pg| A pg)
T

1+ D) (kpq| Vit Vig | Ak pq)

R,p<q
+ 2 (@k|ValAik)ipq; A lpg)
i<R; p<q,l

ik+p,q,l
+ X (ik|Va| Aik)(lpq| Alpg)
i<hil,p<q

i, R+p, q,l

+ 2 (kPG| Vip+ Vog+ Varl Akpg)

R, p<q

+ X (kpq |\ Vip+ Voot Vaul Akplg)
p<q,k

+ D (kPG Vit Vau+Va| Akpql)
p<q, k<l

+ X (kpql| Vit Vot V| Akpgl)
k,p<q<l

+ 2 (k?‘qllvhl+qulAkm.
q<p, k<l

It is convenient to associate a graph with each
matrix element, introducing the corresponding
graphical form for the different functions and cor-
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responding operators entering into the expression
for the matrix element. We shall denote the cor-
relation function fp7(r, ') by a solid line directed
from r’ to r (see Fig. 2), the complex conjugate
function fﬁl (r, r') by a solid line directed from
r to r’. The potential V(r — r’) will be expressed
by a wavy line, and the Laplace operator A by a
dashed line.

The matrix element

(kpq| At Ap+ A | Akpq)

is described by the graph of Fig. 3a, and the matrix
element

(k E?( Viot+ VgtV |A E"I)

by the graph of Fig. 3b. The matrix element
(ik | Vijk | Ajk) (P | A | pq) corresponds to the
unconnected graph of Fig. 4.

Consideration of the matrix elements makes it
possible to formulate a number of rules with whose
help it is possible to construct the expression for
the energy of the system of N particles with ac-
count of corrections of second, third and higher
degrees in the correlation functions.

1. Graphs determining the energy of the system
contain not more than 2 (N — 1) straight lines, the
vertex index p and its coordinate r are the same
for all lines entering the vertex.

2. In each graph there is not more than one
wavy or dashed line.

3. Graphs with disconnected straight lines are
equal to zero.

4. Summation in the expression of the energy
is carried out over all indices encountered in the
diagram, and integration over the coordinates of
the end lines.

5. Closed loops of solid lines are possible only
in those cases in which it is possible with account

’ { =T —_
—_— -- g 7' __~_>

FIG. 4
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of the direction of the lines to form a closed con-
tour with a definite direction of rotation —in the
clockwise direction or the reverse.

6. To each index k and coordinate r of the end
of the line there corresponds i (r) and @f(r).
The correlation functions directed to the right and
the product of all functions ¢ corresponding to a
given graph are anti-symmetrized.

7. Graphs with unconnected wavy and dashed
lines do not, in any case for large systems, make
any contribution to the expression for the energy
since they correspond to normalization of the com-
plete wave function of the system.

8. If the graph consists of several disconnected
parts, then summation in each part is carried out
independently; however, in each term of the sum

the disconnected parts do not keep the same indices.

Making use of rules 1 —8, it is possible to es-
tablish the fact that graphs containing disconnected
correlation parts of the type of Fig. 5 do not have
to be taken into account in the computation of the
energy since they correspond to normalization of
the wave function of the ground state.

Thus, the situation here is similar to quantum
field theory where the vacuum-vacuum transitions
do not change the propagation function.

Higher degrees of correlation functions f take
into account the change of the energy of the system

as the result of finding three or more particles
close to one another. . .

The matrix element (@) |H|y(®) + (0| H| )
=T® 4y jg represented by the graph of Fig. 6
(T(Z) corresponds to the graph of Fig. 6a; U@ to
the graph of Fig. 6b; we have omitted the discon-
nected graphs). Making use of rules 1 —38, it is
easy to write down the analytic expressions for
T() and U,
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