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We obtain a transport equation for a high-temperature plasma. The effective cross sections 
for electron-electron and electron-ion collisions are evaluated without an artificial cutoff of 
the interaction. We elucidate the role of the plasma oscillations for plasma kinetics. We 
show that one must take into account the influence of the ions on the screened interaction 
when considering electron-ion collisions. 

IN a previous paper1 we obtained a generalized 
transport equation for electrons which interacted 
with one another, with phonons, and with neutral 
impurity centers. We apply here the method de­
veloped in reference 1 to the case of a quasi­
neutral plasma. 

It is well known that in the case of the Cou­
lomb interaction the total bremsstrahlung scatter­
ing cross section diverges logarithmically. The 
usual transport equation in which only pair 
collisions are taken into account is therefore in­
applicable in that case. This difficulty is usually 
eliminated by cutting off the impact parameter at 
distances of the order of the Debye radius. Lar­
kin2 evaluated rigorously the transition probabil­
ity for a fast electron passing through an electron 
gas in equilibrium the space charge of which was 
compensated by a smeared-out positive charge. 

The problem whether one can describe only 
pair collisions even after some renormalization 
of the interaction remains, however, not cleared 
up. The present paper is devoted to an elucida­
tion of that problem.* 

We also take into account the motion of the 
ions and we investigate their role in the screen­
ing of the interaction. We hope later on to use 
the transport equation obtained here to calculate 
more accurate values of the transport coefficients. 

*A short note by Balescu' is devoted to related problems; 
in this note he gives without proof and without stating the 
limits of its applicability an equation for the distribution func­
tion of an electron gas with a smeared-out positive charge. 
This equation, however, is not in the form of the usual trans­
port equation with pair collisions, and this makes it difficult 
to interpret it physically. 

1. EQUATIONS FOR THE SINGLE-PARTICLE 
DENSITY MATRICES OF THE ELECTRONS 
AND THE IONS 

We consider a system consisting of interacting 
electrons and ions. The Hamiltonian H of the 
system is of the form* 

H = H0 +U, 

V=U,, +V,,+Uu. 
(1) 

Here 
1 ~ + + {> U ee = 2 ...:::.J Uq-q' aq aq• at at' q+f. q'+f'. 

q+q', f, I' 

U,1 =- ~ Uq-q' a; aq• AT Ar {>q+f· ~·+r. 
q+q',f,f', 

Uu = t ~ Uq-q', A; Aq• A7 Ar 6q+f. q'+f'; 
q+q', f, f' 

k, q, and f are wave vectors, Ek = li2k2/2m is 
the electron energy, Ek = li2k2/2M is the ion en­
ergy, Ak and ak are creation operators for an 
ion and an electron, respectively, uy = v- 1 4rre2y- 2, 
and V is the volume of the system. 

Let there be a weak electromagnetic field in 
the system. The extra term in the density matrix 
Ft of the system (the matrix is proportional to 
the electrical field EJ..t) is of the form [see Eq. 
(1) of reference 1 ] 

0 ll 

F1 = ~ d'f~ dxE .... (x,t +'t) ~dA.[J~(x,T+iliA.) 
-oo o 

+ J~ (x, 't + iliJ..)) F0 • 

*The electrons and ions are assumed to have no spin. 
This is permissible, since exchange effects are small under 
the conditions of interest to us (vide infra). 
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FIG. 1 

Here J~ and Jb are the electron and ion current­
density operators, F0 = z- 1 exp (-~H' ), Z = Sp 
exp ( -~H' ), H' = H -MN, N is the total particle 
number operator (electrons and ions ) , and M is 
the chemical potential. 

As in reference 1, we can determine the cor­
rection to the single-particle density matrices of 
the electrons and ions, respectively 

0 ~ 

fpp•(i)= ~ d-r~dxEv-(x,t+'t)~dASp{F0 a;ap•[J~(x,'t 
-00 0 

+ ilfl..) + J~ (x, 't + iliA))}, 

0 ~ 

q>pp•(i)= ~ d-r~dxE~<(x,t+'t)~dASp{F0 A; Ap•[J~(X,'t 
-oo o 

+ ih/...) +J~(x, 't +iliA)]}. (2) 

Putting EM (X, t) =EM (x, s) exp (i (K • X)+ st] 
and following reference 1, we change to a diagram 
expansion of the functions fpp' and (/Jpp' in powers 
of the interaction. In any diagram there go to a 
terminal point T either two electron or two ion 
lines with indices k and k' (the line k' enters 
into the terminal point T and the line k starts 
from it) over which the summation is carried 
out. In the first case the terminal point T corre­
sponds to a factor 

E (x, s) e•1 (e1if2m) (k + k')~k', k-x• 

and in the second case to the same factor with 
e/m replaced by - e/M ( e is the electron charge, 
and m and M are the electron and ion mass re­
spectively). 

For diagrams occurring in the expansion of 
the function fpp' two electron lines go to the 
terminal point - i:l'iA. (p' enters into the terminal 
point - i:l'iA., and p starts from it). For the func­
tion (/Jpp' -ion lines occur at the terminal point 
-i:l'iA.. 

It is clear that there can be three types of 
points, corresponding to electron-electron, ion­
ion, and electron-ion interactions (see Fig. 1). 
In the first two cases the point corresponds to a 
factor u.y. and in the third case to -u.y. The 
other factors corresponding to the points 1/i:li, 
-1/i:li, and -1, and also factors corresponding 
to lines and intersections are defined in the same 
way as in Sec. 1 of reference 1. A free section 

~ - ~. ~.~;' - p ,i:J7 

~ it:-~ ~(-~~ = + ;a:;.+ ·-
'I p II II 

FIG. 2 

can clearly arise not only when two electron lines 
are cut, but also when this happens to two ion 
lines. 

The system of two generalized transport equa­
tions for the functions fpp' and (/Jpp' is depicted 
in Fig. 2 and is written down as follows 

(s + i(J)p +x. p) f p, P+>< = r p, P+>< + ~ f q, q+>< w~~ + ~ q>q, q+>< w~~· 
q q (3a) 

R + ~ ii ' ~f ei = p, P+>< LJ (j>q, q+x Wqp T LJ q, q+>< Wqp' (3b) 
q q 

Here :l'iwkp = Ek- Ep, :l'i~kp = Ek- Ep. Ek is the 
energy of an electron with wave vector k, and Ek 
the energy of an ion. The quantities rp,p+K• 
Rp,p+K• and Wqp are defined in analogy with the 
quantities rp,p+K and Wqp of reference 1. rp,p+K 
and Rp,p+K differ from one another only in the 
kind of the last lines on the right. The quantities 
wqp with different superscripts differ by the kind 
of extreme lines on the right and on the left. 

E I A . , .. 
( , .-

a c e 

-~ y {.----! . , ___ ... 
b d f 

FIG. 3 

2. EVALUATION OF THE COLLISION TERM 

If the interaction potential were to decrease 
steeply at large distances, and were the particle 
concentration in the plasma low, we could confine 
ourselves in the quantity w to the diagrams pro­
portional to the first power of the concentration. 
(We recall that the concentration arises from 
each reverse electron or ion line.) In Figs. 3 
and 4 we have drawn possible types of such dia­
grams for wee and wie in the Born approxima­
tion. Account of these diagrams would lead to 
the usual collision term in the transport equation, 
linearized in the external field (as s - 0 and 
K -o>. 
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FIG. 4 

Diagrams of the type 3a and 3c lead to expres­
sions arising when the electron-electron collision 
term is linearized; this term describes the arrival 
of electrons into the state p. Diagrams of the 
type 3b and 3d lead to the expression arising when 
the term corresponding to the departure of elec­
trons is linearized. Diagrams of the kind 3e and 
4a give the term describing the arrival of elec­
trons into the state p through collisions with ions; 
diagrams of the kind 3f and 4b give correspond­
ingly the term describing the departure. Diagrams 
for the quantities wii and wei are obtained from 
those for wee and wie by replacing electron lines 
by ion lines and the other way round. 

In the Coulomb interaction case under consid­
eration, however, it is impossible to restrict 
oneself to the above-mentioned diagrams since 
they diverge for small momentum transfers. To 
circumvent this divergence one must add to each 
of the diagrams of Figs. 3 and 4 diagrams of 
higher order in the concentration, but also of 
higher order of divergence with respect to the 
momentum transferred (which is the same as in 
the original diagram ) . We shall in the following 
consider the case of a nondegenerate gas. These 
diagrams will then differ from the original ones 
in that we must instead of each wavy line intro­
duce a chain consisting of an arbitrary number of 
electron and ion loops (Fig. 5). 

a 'V\1\JVV' ~, ..... _,~ 
I e • • 
.............. -~ -

" ~ z1 z2 . 

b '\IV'WIN' -
FIG. 5 

The renormalization of the interaction can be 
done as follows: For the sake of convenience we 
assume for the time being that the renormalized 
wavy line is replaced not by a sum of chains, but 
by a block representing the sum of all possible 
diagrams which are fixed by two wavy lines in 
the points z1 = t 1 - iliA. and z2 = t2 - iliA. on the 
horizontal section of the contour. We shall as­
sume that all internal lines of the block cover the 
whole of the contour C. One understands easily 
that as s - 0 the diagrams that contain points on 
vertical sections automatically contribute nothing 
to w, as there will be only one vertical free sec­
tion in them. 

We denote by z2 the point which is most to the 
right so that t 1 > t2 (all t are negative). This 
designation has a meaning for the modified dia­
grams (see reference 1) since in them the rela­
tive order of points on the horizontal sections re­
mains unchanged in the integration. We assign to 
the block an arrow pointing from z 1 to z2• Above 
the arrow we indicate the wave vector y, which is 
transferred through the block from the point z2 to 
z1. It is clear that all arrows at the blocks will 
be directed from left to right. Such a block is 
drawn in Fig. 5b. We shall call it a plasmon line. 

In the time representation the plasmon line 
corresponds to 

Ly (z1 , z2) = ~, Sp {e-f3H, Tc exp (~ ~ Vz dz) 
~· c 

+ + 
Bkp = ak ap + Ak Ap. 

It is clear that 

Ly (z1, z2) = L_" (zi, z2). 

Changing over from the interaction represen­
tation to the Heisenberg representation we see 
that 

L-, (zi> z2) = ~ Sp {e-f3H T c Bq. q+y (z1) Bq'+y. q' (z2)} z-1. 
q, q' 

If z 2 occurs earlier than z1 on the contour C 
(regular plasmon line), 

Ly (z~> z2) = Ly (l1- t2) 

(4) 

(5) 

= ~ Sp {e-f3H Bq, q+y (t1) Bq'+y. q' (t2)} z-1. (6) 
q, q' 

If the plasmon line is irregular, 

Ly (zi> z2) = IY {t1 - t2) 

= ~ Sp{e-f3H Bq'+y,q•(t2) Bq, q+y (t1)}Z-1 • (7) 
q, q' 

We put 
ioo+• 00 

Ly (-r) = ~ Ly ('I'J) e71~ d'l'), Ly ('I'J) = ~ e-71' Ly (-r) d-r; 
-ioo+• 0 

ioo+• 
IY (,;) = ~ ly ('I'J) e71~ d'l'), 

-ioo+• 

00 

Iy ('I'J) = ~ e-71~ I'Y (-r) d-r. 
0 (8) 

Here Ly( TJ) and Ly( TJ) are functions analytic in 
the right-hand half-plane of the complex variable TJ· 

We can now formulate the rule for writing down 
the expressions corresponding to diagrams in 
which the integration over the time is performed. 
This rule remains as before, with one difference 
in that plasmon lines occur, each carrying an 
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FIG. 6 

"energy" iliry. A regular plasmon line corre­
spo~ds to the factor Ly< 11) and an irregular one 
to Ly( 11). An integration of the form 

too+• 
(2ltif1 ~ d'l] 

-ioo+e 

is performed over all 11· 
When we define the direction of the plasmon 

lines as we have done above, they all enter are­
gion that lies to the right of the vertical straight 
intersecting line. The factors which occur at the 
cuts through a plasmon line will thus be of the 
form [ s + i ( WMN + iry )]-1 and have thus a pole 
in the right-hand half-plane of 11 ( Re s > 0), 
where Ly( 11) and Ly( 11) are analytical. One 
can thus integrate over 11 by closing the contour 
around the right-hand half-plane. 

It is now easy to reduce all pertinent diagrams 
to expressions containing Ly( 11 ). We show in the 
Appendix that the function Ly ( 11 ) is connected 
with the function Ky ( 11) by the simple equations 
(A5) and (A6). The latter can be evaluated by the 
method applied in Larkin's paper. 2 

In the final reckoning all the diagrams will 
thus be expressed in terms of Ky ( 17) as follows: 

I. The sum of the diagrams 3a and 3e assumes 
after renormalization the form given in Fig. 6a. 
The sum of diagram 6a and the diagram with the 
opposite slope gives 

2 ioo+• [ -
I =~ ( d Ly(TJ) 

Wp+Y. P 2ni/i2 ) 'I] S + i ((I) + + iT)) 
-too+t P Y, P 

+ Ly (s - irop+y. P )] 

or, using Eq. (A6) 

W~+Y. P = - (u~ j!i2) 2~1i( l 

- exp (- ~lirop+y. P )r1Im/(Y (s + irop+r. P ). (9) 

II. The renormalized diagrams 3b and 3f are 
given in Fig. 6b. The sum of diagram 6b and the 
diagram with the loop at the bottom gives 

II " "" I Wqp =- Uqp ~Wp,p+y• (10) 
y 

III. The renormalization of the diagram 3c re­
duces to adding to it the diagrams given in Fig. 7. 

<t·rCA~: 
.\.!. 

·~ 

c~ 
'I Va P 

d 

, 

FIG. 7 

One must also add the diagrams obtained from the 
diagrams of Fig. 7 by replacing one of the plas­
mon lines by a point in the places indicated on the 
figure. In each of these diagrams one must take 
into account the possibility of the transposal of a 
point (see reference 1) in those casse where such 
a transposal does not lead to the occurrence of 
additional irregular electron lines. (We recall 
that we are considering the nondegenerate case.) 
One verifies easily that one must transpose all 
those points where the electron lines form a sharp 
angle. 

The diagram 7a corresponds to the expression 
(we have omitted for the sake of simplicity the 
integrals over 11 and the sum over y) 

~u~ fn 4) [s + i (roq+y. q + i1]1)r1 [s + i (i1]1 + i1]2)r1 [s 

+ i(rop+y. P + i1]1)]-1 

X l:IY (1]2)- L.y (1J2)] Ly (1]1) (nP+Y- np). 

The diagram 7b corresponds to the expression 
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(u~ /li4) [s + i (roqh q + ith)P [s + i (iTJI + iTJ2W1 

x [s + i (rop, P+Y + iTJ2)r1 

X [l.., (TJ2)- L.., (TJ2)l L.., (TJ1) (np+y- np)· 

The sum of these expressions and the expres­
sion corresponding to the diagram of Fig. 7c 
gives, as s - 0, 

(u~ /li4) [s + t (roq+y. q + Cilp, P+Y )r1 [s + i (rop+y. p + iTJ1W1 

X [s + i (rop, P+Y + iT)2)r1 [L.., (TJ2) 

- L.., (TJ2)J L.., (TJ1) (np+-r- np) 

or, after integrating over "11 and ry2 

u~ nP+Y- nP [-L ( --L • ) 
• y S 1 tCilp, P+Y 

hl' s + i (wq+-y, q + wp, P+Y) 

- L.., (s + irop. P+Y )] L.., (s + irop+y, P ). 

Collecting all other diagrams leading to the re­
normalization of diagram 3c and using Eqs. (A5) 
and (A6) we get the expression 

.t~ nP+Y 11 - ~u.., [(.., (s- iroP+Y· p) !2• 

ij2 S + i (wq+y, q + wp, P+Y) 

The analogous renormalized diagram, which 
differs in slope from diagram 3c, leads to the 
complex conjugate expresRion. Thus 

2 

w!~l = ~ 21t ~: a (Cilq+Y, q- Cilp+y, p )11 - ~Uy KY 
y 

(11) 

IV. The renormalization of diagram 3d and of 
the analogous one with the loop at the bottom is 
performed in exactly the same way. The result is 

2 

w~~ =- ~2:rt~: 6 (roq-y, q + roP+Y. P) II- ~u.., [(.., 
y 

(12) 

The renormalization of the diagrams of the 
kind 4a and 4b leads to expressions differing from 
w~ and w~ only in that Wq+y,q and Wq-y,q are 
replaced by nq+y,q and nq-y,q· 

Substituting the values of w evaluated in the 
foregoing into Eq. (3a) and using Eq. (A7) for Ky 
we obtain the collision term of the transport equa­
tion for the electron distribution function in the 
form 

S =Set+ See; 

s •• = V~2 ~;~a (rop-ry. p- Cilq+-r. q) I Ay (rop+Y. p) 12 

y,q 

X (fP+Y nq + np+..,fq- fpnq+y- np fq+"), (13) 

Set = v-2 ~ ;: 6 (rop+r. P- Qq+y. q ) !Ay (roP+Y. P )12 
y,q 

X <fP+Y Nq + np+.., cpq- f p Nq+.., - np cpq+.., ). (14) 
Here Nq is the equilibrium ion distribution function 

(15) 

FIG. 8 

3. THE SELF-CONSISTENT FIELD AND THE 
FREE TERM IN THE TRANSPORT EQUATION 

In the foregoing we did not consider diagrams 
of the first order which occur in Wqp (see Fig. 8). 
These diagrams need not be renormalized, as the 
chains that renormalize them are taken into ac­
count when the transport equation is derived. Dia­
grams of this kind lead to the occurrence of a 
term 

~ (f q, q+x - Cj)q, q+x ) (i XV p) :np Ux 
q vEP 

on the right-hand side of the transport equation 
for the electron distribution function. Here Vp is 
the velocity of an electron with wave vector p. 
We assumed that K « p. This term describes the 
influence of the self-consistent electron and ion 
field. 

We restrict ourselves in the quantity rp,p+K 
to diagrams whic!h do not contain the interaction. 
We have then 

Ex= E (xs) est+t><x. (16) 

4. THE TRANSPORT EQUATION 

If we take into account the fact that the electron 
distribution function fp ( x, t) can be expressed in 
terms of fp,p+K(t) by the equation 

fp (x, t) = ~ et><x fp. P+>< (t)dx, (17) 

we get finally from Eq. (3a) 

of onP onP af + (vp v)fp + e (Evp) T - e (V1f,vp) ae = S,, +Set, 
8 P p (18) 

1f (x, t) = e ~IX- x' ~-l y-l ~[fq(X', f)- cpq(x', f)]dx'; 

q (19) 

See and Sei are defined by Eqs. (13) and (14). 
This equation has the standard form of a trans­

port equation with pair-collisions, linearized with 
respect to the deviation of the distribution func­
tion from the equilibrium one. The quantity 
Ay(wp+y,p) plays the role of an effective transi­
tion matrix element for all collisions. 

We can use Eqs. (A7) to write I Ay(wp+y,p) 12 

in the form 

(20) 
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where 

1=1;+1., r = r, + r., 

q 

z V :rt~Bp cos \jJ exp (- ~Bp cos2 \jl), 

r, =(n0~hVf1 :rt 2; (Nq- Nq+y) 6 (Oqh q- wP+Y. p) 
q 

z V :rt~Bp Mjm cos \jJ exp (- ~Bp M cos2 \jl), 
m 

(21) 

(22) 

(23) 

(24) 

1/J is the angle between the vectors p and y, ~ 2 

= 4rn0e2,B is the inverse square of the De bye radius, 
and n0 the electron (ion) concentration. 

The approximate expressions given in Eqs. 
(21)- (24) are obtained by taking it into account 
that the characteristic momentum transferred is 
appreciably less than the thermal momentum 
( y « p ) both for the ions and for the electrons. 

When electrons collide with one another,.•which 
corresponds to the term See the values of the angle 
1/J need not be restricted. The quantities Ii and r i 
can thus be neglected in the term See by compari­
son with Ie and r e• since M/m » 1. The ions do 
therefore practically not take part in the screen­
ing of the electron-electron interaction. One sees 
easily that in the case where the velocity of one 
of the colliding electrons is much less than ther­
mal, the quantity Ay corresponds to the first 
Born approximation for the scattering by the usual 
Debye potential. 

If the electron velocities are not small com­
pared with thermal, Ay takes into account the 
deformation of the Debye cloud. 

When the energies of both the colliding elec­
trons are much higher than thermal, I Ay 12 has 
steep maxima in the points wp+y,p = ± w0 ( w0 is 
the plasma frequency). This corresponds to such 
a process that one electron emits a plasmon and 
the other one absorbs it, or the other way round. 
The plasmons can thus not carry away any mo­
mentum from the electron system. 

It is also clear from Eq. (13) that the term with 
the renormalized electron-electron collisions does 
not contribute to the momentum balance. Papers 

in which the influence of plasma oscillations on 
the conductivity was taken into account by assum­
ing the plasmons to be an independent system, 
like the phonons, are thus incorrect. 

In electron-ion collisions described by 
the term Sei• the energy conservation law 
restricts the possible values of 1/J to a 
region close to % 1r since cos 1/J "' ,.; m/M . The 
quantities Ii and ri are thus not small and it is 
not possible to neglect the influence of the ions in 
the screening of the electron-ion interaction. For 
the same reason (cos 1/J "' ,f m/M ) we can assume 
le ~ 1, re = 0 in the term Sei· 

One could obtain the transport equation for the 
ion distribution function by a completely analogous 
method from Eq. (3b). The Born approximation 
used here is practically nowhere suitable for ion­
ion collisions. We shall therefore not write out 
this equation. 

5. LIMITS OF APPLICABILITY 

We assume when evaluating the collision term 
that K- 0, neglecting it compared with the trans­
fer of the wave vector y. It is clear from Eq. (20) 
that a characteristic value of y is of the order of 
magnitude of the inverse Debye radius. When put­
ting K - 0 we assume thus that the external elec­
trical field changes little over a Debye radius. 

The condition s - 0 ( s = v - iw ) means that 
nw is much less than the characteristic energy 
transferred in a collision Ep+y- Ep "' nwo. Putting 
s- 0, we assume thus that the frequency of the 
external field is much smaller than the plasma 
frequency. 

When evaluating Ky we made the same ap­
proximation as those in Larkin's paper2 i.e., we 
assumed that the gas parameter is small: 
(e2/kT)3n0 « 1. 

One can show that neglecting in w diagrams 
in which plasmon lines which carry different mo­
menta intersect or are superimposed upon one 
another (see Figs. 9a and 9b) is valid under the 
same conditions. The same applies to replacing 
rp,p+K by a free line. 

Use of the Born approximation enables us to 
neglect diagrams of the kind drawn in Fig. 10. 
Thts presupposes that the condition 47re2 /nvT « 1 

a b 
FIG.9 
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:§. 
FIG.IO FIG. 11 

is satisfied, where vT is the thermal velocity of 
the electron. 

Neglect of the exchange terms (see Fig. 11) 
presupposes that the electron de Broglie wave­
length is small compared with the Debye radius. 

p conclusion we express our gratitude to 
L. E. Gurevich for valuable advice and discussions. 

APPENDIX 

The evaluation of the quantity Ly ( t 1 - t2 ) is 
based upon the idea of analytical continuation 
which was stated in the paper by Abrikosov et al.4 

and is very close to the calculations given by 
Larkin.2 

We consider the function (where :.\1 > :.\2 ) 

Ky (A.1- A.2) = 2J Sp {e -BH Bq,q+y (- i1iA.1) 
q,q' (A1) 

x Bq'+y.q' (- iliA.2)} z- 1 • 

Its Fourier coefficient 
B 

-1 ~ ioo,/i'A 
K, (wn) = ~ ~ e KY (A.) dA. 

0 

Wn = 21Til/,Bti, (n = 0, 1, 2, ... ), expanded in terms 
of the eigenstates of the total Hamiltonian H is of 
the form 

. -1"" e-~EM [ I KY (wn) = l (~1i) ..::.J PMN (r) wn- twMN 
MN 

- Wn +\wMN J z-\ 

PMN (r) = I2J Bq,q+Y \
2 

• (A2) 
q MN 

We have used here the property PMN(y) = PNM(y) 
which is a consequence of the fact that PMN(Y) is 
an even function of y. 

We denote the analytical continuation of the 
function Ky ( wn) of a discrete set of points Wn 

onto the right-hand half-plane of the complex vari­
able TJ by Ky ( TJ ) 

t 
- T) + iw MN J z-1. 
If we now use Eqs. j6)- (8) we can write the 

quantities L ( TJ ) and L ( TJ ) in the form 

L ( ) -1 "" -ilEM , 1 
y T] = Z LJ e PMN (I) . , 

MN T),- 40'M.N 

- -1"" -BEM 1 Ly (TJ) = Z ..::.J e pMIN (I) + , .. 
MN T)• IWMN 

Comparing Eqs. (A3) and (A4) we get 

Iy (TJ)- Ly (TJ) = i~nR.y (TJ),. 

Iy (s + i.Q) + Ly (s- i.Q) 

=- ~1i (1- e-ll1in)- 1 2Im it (s +in). 

The last relation is only valid when s- 0. 

(A3) 

(A4) 

(A5) 

(A6) 

The expressions arising from the renormaliza­
tion of the diag:_ams in section 2 contain the quan­
tities Ly and Ly only in the combinations which 
occur in Eqs. (A5) and (A6). 

If Ky ( wn) is approximated by a s urn of chain 
diagrams we can use the method applied by 
Larkin2 to get to the expression 

KY (TJ) = ~-1 1 +::~~ (TJ), py (TJ) = p~e) (TJ) + p~i),(TJ), 

p~l (TJ) = -1i- 1 2J . nq+y- nq ' 
q lT) + wq+y,q 

pf> (TJ) = -li.-1 2j . N q+y- N q • 

q l1J + nq+Y. q 
(A7) 
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