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The complex susceptibility of electron spins interacting with a nuclear system is calculated 
on the basis of the statistical perturbation theory. The dependence of the conditions for the 
saturation of the electron system on the resonance conditions of the nuclear system is 
obtained. 

1. INTRODUCTION 

THE method of double magnetic resonance is 
applied to systems containing two different kinds of 
magnetic moments. The sample to be investigated 
is placed in a constant magnetic field H0 = Hz and 
in two periodic fields of frequencies close to the 
Larmor precession frequencies for both kinds of 
magnetic moments. The existence of an inter­
action between the magnetic moments of the two 
systems (for example, hyperfine interaction) 
leads to the result that resonance in one of the 
systems has an effect on the nature of the reso­
nance in the other system. In systems exhibiting 
both nuclear and electronic paramagnetism the 
existence of hyperfine interaction results in a 
number of effects which may be divided into two 
groups. 

To the first group belong the effects associated 
with the influence of the electron paramagnetic 
resonance on the nuclear resonance. As the 
electron system approaches saturation an increase 
in the polarization of the nuclear magnetic mo­
ments (the Overhauser effect) may be achieved. 
The Overhauser effect1 can be observed in sub­
stances with a "rapidly fluctuating lattice": in 
this case the method of double resonance is ordi­
narily used in order to intensify the nuclear mag­
netic resonance signal. 

To the second group belong the effects asso­
ciated with the influence of the nuclear resonance 
on the electron resonance. The first to observe 
this phenomenon experimentally and to give it a 
qualitative explanation was Feher. 2 The saturation 
of the nuclear system does not result in any appre­
ciable polarization of the electron spins. However, 
it alters the conditions for the saturation of the 
electron system and, consequently, leads to a 
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change in the absorption of energy from the radio 
frequency field by the electron system. 

In order to explain this phenomenon Feher2 

considers a simple system consisting of electrons 
( s = %) and nuclei (I = % ) . In strong constant 
magnetic fields the energy level spectrum of such 
a system is of the form shown in the diagram. 
Transitions induced by a microwave field of fre­
quency Ws obey the selection rules .6.ms = 1 and 
.6.mi = 0. The amplitude of the signal due to these 
transitions is proportional to the difference in the 
populations of the levels E1 and E2. If we partially 
saturate the electron system, then the signal due 
to the absorption of microwave power will be de­
creased. If at the same time we induce nuclear 
transitions of frequency WI, then the possibility 
arises of equalizing the populations of levels E 1 

and E2, as a result the difference in the populations 
of the levels E2 and E2 will increase, and this 
will in turn lead to an increase in the electron 
resonance signal. By inducing the nuclear transi­
tions E{- Et. we can observe a sharp decrease 
in the electron resonance signal. 

With such a formulation of the problem the 
method of double resonance turns out to be a sen­
sitive means for studying the phenomenon of nu­
clear resonance. It enables us to determine, in 
particular, the value of the nuclear factor gi· 
The method may be successfully applied in the 
case when the value of the hyperfine interaction 
A ( s ·I) is small compared to the width of the 
electron resonance line, and therefore the hyper­
fine structure can not be resolved by the usual 
method of observing the absorption signal due to 
the electron system.3 However, this turns out to 
be possible if the observations are made by the 
double resonance method, because of the small 
width of the nuclear resonance line. 
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The method enables us to resolve the hyperfine 
structure of a line due to an unpaired electron 
present in a complicated chemical compound 
arising from the interaction of this electron with 
the surrounding nuclei. Among such compounds 
we can include organic free radicals, irradiated 
crystals, and structures with displaced atoms or 
ruptured bonds. In this case we can obtain infor­
mation with regard to the distribution of the elec­
tron density in molecules, crystals, F centers, 
etc.4 Thus, the method of double resonance is of 
great practical interest. 

In this paper we present a quantum -mechanical 
analysis of the phenomenon of the effect of nuclear 
magnetic resonance on the electron paramagnetic 
resonance in systems with hyperfine interaction. 
Such an analysis can not be carried through within 
the framework of the linear theory of magnetic 
resonance, since the very formulation of the prob­
lem assumes the possibility of applying strong 
radio frequency and microwave fields sufficient 
for the saturation both of electron and of nuclear 
resonance. 

In this paper we have used the method of the 
statistical perturbation theory developed by 
Tomita 5 for the case of circularly-polarized 
radiation of arbitrary amplitude. 

2. FORMULATION OF THE PROBLEM 

We consider a system consisting of uncompen­
sated electron spins sk, surrounded by several 
nuclei with different angular momenta Il. We as­
sume the existence of a scalar interaction between 
the electrons and the nuclei, and also of an inter­
action of the electrons with the lattice. We place 
the sample in the magnetic field 

H = H0 + h, (t) + h 1 (t), (1) 

where hs and hi are respectively the intensities 
of the microwave and of the radio-frequency fields. 
These fields are circularly polarized in the plane 
perpendicular to lfo. 

We write the Hamiltonian for the system of 
electrons and nuclei in the following form 
' "V'k "' l l'l "' AkAl AA A 3C =-gsl-ts.LJ s H- L.J gl ~-til H -1- L.J AtS I + sf+ ;Jfp, 

" { l, h (2) 

where J..l.s and J..i.I are the electron and the nuclear 
magnetons, while Az is the hyperfine interaction 
constant. The term s · F where s = ~sk takes 
into account the interaction of the electrons with 
the lattice, while itF is the operator for the energy 
of the "lattice". 

For subsequent discussion it will be convenient 
to go over to the circular variables 

ml m, 
f?: 

I~, 
;hill[ + 2 I I 

lz -f 6 

' E, 1}-l 
t, + z 2 

"' 1 "" .A A A 

s±1 = }'2" (s, ± tsy), s0 = Sz, 

f±1= ;'I(fx±iJy), l 0 =J,, 

in terms of which the microwave and the radio 
frequency fields assume the form 

hS _ hse-i"'s I t,S _ hS _ Q· 
+1 - I I'Q - -1 - I 

(3) 

h~1 = h~ = 0, h':_1 = h~e;"'11 , (4) 
while the Hamiltonian (2) may be written in the 
following form: 

A "' A" "' '" s "' 'k I ;;£ =- gsl-ts L.J soHo- gs!ls L.J Sp.h-p.- gsl-ts L.J Sp.h-p. 
k h,p.+O k,p.+O 

"' l l 'I "' l l' l s "' l lA l I - L.J gil-ttl o H o- L.J g,(lii p.h-p.- L.J gii-tJI p.h-p. 
l l, 1'-'FO k, 1'-+0 

o "' A A "' 'k 'l ' 1 L.J s ... F _~' + L.J A1sp.l-p. + ;Jfp. 
p. lh 

(5) 

In future we shall assume that the energy of the 
hyperfine interaction is small compared to the 
Zeeman energy of the electrons. In this case the 
electron and the nuclear spins precess about the 
strong constant field H0 independently of each 
other. The hyperfine interaction introduces only a 
perturbation of this motion. This latter circum­
stance enables us to pose the problem of finding 
the complex susceptibility of the electron spin 
system by itself. The hyperfine interaction will 
lead to the "inhomogeneous broadening"6 of the 
electron paramagnetic resonance line. 

"Inhomogeneous broadening" occurs when in 
the spin system under consideration interactions 
are possible not only with spins of the same kind 
("homogeneous broadening"), but also with other 
kinds of spins not belonging to this system. Inter­
actions giving rise to "inhomogeneous broadening" 
do not leave the spin system in equilibrium. They 
may vary slowly with time. In the case under con­
sideration the second last term in (5) depends on 
the time, since the nuclear system is also in a 
state of magnetic resonance. 

3. EQUATIONS OF MOTION FOR THE 
MAGNETIZATION VECTOR OF THE 
ELECTRON SYSTEM 

The density matrix for the whole system in the 
case under consideration may be written in the 
form 
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p-e-8.Yr, [1 c= l ! kT, (6) 

(7) 

In accordance with (5) .Jt0 consists of three parts 
corresponding to the energy of the electrons and of 
the nuclei in the external field, and also to the 
lattice energy :l{F. 

On utilizing the operator identity 
(l 

exp (-~(§eo+ :if I))= exp (- ~Jfo) { 1- ~ dl.. exp (A.Je0) 

{3 A, 

X §ei exp (- A.Jfo) + ~ dA1 ~ dA2 exp (f.I§eo) Je1 exp [ -- (i.1 

0 0 

--/,2)i£0)Jelexp(-A2ieo)+ ... } (8) 

and on taking into account that the energy of the 
hyperfine interaction tiwint is small compared to 
the Zeeman energy, while at the same time 6 
= tiwint /kT « 1, we shall write the density matrix 
(6) in the form of a product of three independent 
factors 

(9) 

Here a is the density matrix for the electron spin 
system, a' is the density matrix for the nuclear 
spin system and p' is the density matrix for the 
lattice. 

The magnetization for the electron system is, 
evidently, determined in the following manner: 

(Ms) = Sp ( a~,s) = ~· Sp ( a+s) - ~· Sp (a_s}. (lOa) 

Here a+ describes the ensemble of electrons 
whose spins are opposite to the field, while a_ 
describes those whose spins are parallel to the 
field. 

Similarly, for the nuclear system we have 

<M1) = Sp (a'~1i) = ~~ Sp (a))-~~ Sp (crj). (lOb) 

On taking (lOa) and (lOb) into account we can re­
write (9) in the form 

p =<a+- aJ <a:- a~> p' = <a+a: + a_a~- cr+a~- a_a:> r;·. 
(lOc) 

It is necessary to carry out such a decomposition 
because in the problem under consideration when 
energy is absorbed from the microwave field 
transitions occur not from both hyperfine sublevels 
of the ground state, but only from the one which, 
for example, corresponds to the value of the nu­
clear magnetic quantum number m1 = + 1;2. The 
transition may occur to the upper level ms = 1/ 2 

which also corresponds to mi = %. 
The variation of p with time is determined by 

the equation of motion 

- m a'P 1 at= rr.1eJ. (11) 

If we do not restrict ourselves to the case of 
small amplitudes of the microwave field hs, then 
we cannot assume that the system of electron 
spins is in a state of thermodynamic equilibrium, 
since it is acted upon by a large secular time­
dependent perturbation. In a system of coordinates 
rotating about the direction of the constant mag­
netic field with frequency ws, the system of elec­
tron spins will be acted upon by an effective mag­
netic field which is independent of the time. Now 
only those terms will depend on the time which de­
scribe a weak interaction of the electrons with the 
nuclei and with the lattice. In this system of coor­
dinates there exists an equilibrium distribution of 
electron spins determined by the Boltzmann factor. 
The effective field Heff is inclined to the z axis 
at an angle J: 

sin.&= h' [(H0 + ro. I r.)2 + h•2J-'I., (12) 
cos.& = (H 0 + ffis Irs) [ (H 0 + ffis I r,)2 + h•2]-'l•, 

Hetf = [(H0 + ro,/rs)2 + h•2]'1•. (13) 

The transition to the coordinate system rotating 
about the effective field is accomplished by means 
of the canonical transformation 

s~ = exp (iro,s~t) (~ ap.v (.&) s.) exp( -iw.s0t). (14) 

The matrix aJ.lV ( J) has the form 

~(cos~ + 1) 2-'/, sin~ ~(cos~ - 1) 

ap.v(.&) = -2-'f•sin~ cos~ -2-'/•sin~ (15) 

~(cos~ -1) 2-'f, sin~ ~(cos~ + 1) 

Here iJ- and v take on in turn the values 1, 0, - 1. 
Upon application of the transformation (14), 

Eq. (11) is written in the following form: 
'T .AT AT 

-iii dp I dt = !r .'Jf 1. (16) 

Here 
(17) 

(18) 

ie[ (t) = ~ A1s~l 1_P./~'"'s 1 + ~ sh. F -p./P."'s 1 , fir' = g,~, p. 
t. h,p. n.p. (19) 

On assuming that the time interval t defined by 
the inequality E = :Je{t/ti « 1 is greater than the 
relaxation time for the electron spin system we 
can utilize time-dependent perturbation theory. 
In order to do this it is convenient to go over to 
the interaction representation, and to expand the 
density matrix in powers of the parameter E re­
taining second order terms: 



96 T. G. IZYUMOVA and G. V. SKROTSKII 

t 

[/' (t) = rF (0)- + \ [ p" 7 (0) :ft:r (i1 )] dt 1 

0 

t t 1 

-- ;,2.~~ dt 1df 2 [[p' 7 (O):Yf~7 (t1)1:ft;• (t2)j. 
on 

(20) 

We note that E2 always remains greater than 6, 
and, therefore, the neglect of terms linear in 6 in 
(8) is quite legitimate. 

It is necessary to average expression (20) over 
the canonical ensemble of the nuclei and the 
"lattice." After averaging and differentiation 
with respect to time we shall obtain the approxi­
mate equation for the density matrix of the elec­
tron system in the interaction representation: 

t 
aaT*(f) i Q ( A*T A*T ) dt at =-Tar.\ ([ p (0) :JC1 (t1 ])a•, p' 1 

0 

In averaging over the ensemble of the nuclei we 
must distinguish two cases, depending on what type 
of nuclear transitions are induced. In the transi­
tions E{- E 1 it is necessary to take into account 
only the nuclei coupled to the electrons parallel to 
the field, and the averaging is taken only over the 
part of the density martix u+ (a! - u~) from (10c}. 
If the transitions E2 - E2 are being induced, then 
it is necessary to average over the other part of 
(10c) u_ ( u! - u~ ), since in this case we consider 
only the nuclei coupled to the electrons whose 
spins are directed oppositely to the field. In these 
two cases the averages of the terms including the 
hyperfine interaction will differ only in their sign. 

It is necessary to substitute expression (19) 
into equation (21}, and in doing so it is necessary 
to keep in mind that in the problem under consid­
eration we neglect the satellite absorption lines of 
the electron system (their frequencies lie far 
from the main line). Therefore, in the term 
linear in ."'f1 it is necessary to set JJ. = 0, and in 
the quadratic term to set JJ. = - JJ.'. Then after a 
straightforward calculation we obtain: 

acr•T (I) i "" { A. "" A. ·} 
----af = - h e-ivO,t ..::.1 llov (%) (f o (tl)) + ~ A;(fto (ll)) 

l<v ' 

x[c'r(O)s~<vl-~ ~ ap.v(%)a-v-v(%)exp(-iv.U1t 
kp.vv' 

t 

- iv'01t) ~ d-rexp (iJlW1't + iv'Q1-r) {(<F::_p. (-r) F: (0)) 
0 

The left hand side of (22) can be written in the 
form 

AT AT 
i) '*T i) { (' , !/tO ) AT (' • !/tO t)} at G = at exp , - 1 T t . G exp t T 

= exp (- i~~ t) {a~;+ i [ (/, ~~n exp (i ~~ t). 

(23) 
On multiplying both parts of (22) on the left by 
exp ( L7t0 t/11 ) and on the right by exp ( - ii£0 t/11), 
and on noting that in the energy representation 
(it'[ diagonal) we have 

we go over in (22) from the interaction representa­
tion again to the rotating coordinate system: 

QGT r AT it~ J i {"" A 0 at= -i G, T -h~ ap.v (%) ..::.~(F0 (0))p• 
L kp.v l 

+At (1~· (O))a•} [c?, seJ 
t 

_ ;. ~ ap.v (%) a-p.v' (%) ~ d-r exp (iJ.1.W1't + iv'Q1-r) 
kp.vv' 0 

X {[ (F::_p. (-r) f';(O))p• +~A~ (i:_p. (-r)f~• (O))a•1 [SvSv•OT 
l 

- s.·rls.J + [ <f'; <o> ft::_p.:<-r>>p· 

(24) 

Here < > u' and < > p' denote averages over u' 
and p', while 

AT AT 

yr (t) = exp{i~0 t}iexp {- i~0 t}, 

(25) 

A *T { it F } A { it F } F (t) = exp iTt F exp - iTt 

are the operators for the nuclear spin and for the 
"lattice" in the interaction representation. 

In order to obtain the equations of motion for 
the magnetization of the spin system we multiply 
(24) on the left by JJ.s • s and sum over the states of 
the electron system. As a result of this we obtain 
d AT i AT AT i"" AT ' 
dt (M ) = h ([M , 3t'o])- h "'-'llov (%)(<1>0 + 7 0 ) ([M , s.]) 

v 

p..vv' 

.... AT A 

-(<Dp.v•=flJ"p.v') (Sv•[M , s.])}. 

Here we have introduced the notation 
t 

~2 ~ d-rexp (iJlW8't + iv'Qs-r) <F;p.( ~) F~p.( ~ )) 
0 

(26) 

(27) 



ON THE THEORY OF DOUBLE ELECTRON AND NUCLEAR RES ON ANC E 97 
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~ 2 (' <' t• ( T ) ' t• ( 0 )) LJ al l d't' exp (ifLWs't' + iv' Qs't') I 'I'lL 0 I ±P. T o' 

l 0 

(28) 

where az = Az /fi. The functions .:PM v determine 
the nature of the relaxation processes due to the 
interaction of the electron spins with the lattice, 
and, in general, with one another. T~e expressions 
for these functions agree with those introduced in 
Tomita's paper. 5 

The functions >J!J.! v are characteristic for the 
problem under consideration. They are due to the 
hyperfine interaction and lead to "inhomogeneous" 
broadening of the electron line. As will be seen 
from the following discussion, they depend in an 
essential manner on the resonance conditions for 
the system of nuclear spins. 

In order to obtain the final form of the functions 
>J!J.tv it is necessary to evaluate the average values 
appearing in (28). As we have already mentioned, 
IZ* ( T) - the operator for the nuclear spin in the 
-j.( 

interaction representation - is the solution of the 
equation 

• A. t• A l* A :i: 

t1i dl / dt = [I :It' int ] · (29) 

.YfJnt contains all the interactions within the nuclear 
system which we do not introduce explicitly. In 
order to utilize in subsequent calculations the rep­
resentation in which :ft0 nucl (the Zeeman energy 
of the nuclei) is diagonal, it is necessary, just as 
in the case of the electron system, to go over to 
the system of coordinates in which we can speak 
of an equilibrium ensemble. This is the system of 
coordinates rotating about the effective field 

H;,, = [{(Ho ± azs0)- wJ/rW + h12 J'h (30) 

with frequency WI. The field H~ff is inclined to 
the z axis at an angle ez determined by the expres­
sions 

cosfl1 =[(H0 ±a1s0)-o>J/r~l/H!ff' sinBz=h1/H~ff' (31) 

In this case the old operators will be expressed in 
terms of the new ones in the following manner: 

(32) 
), 

The matrix 3.j.tA. ( 8Z) is of the same form as (15). 
On taking (32) into account we obtain 

However, 

(JU~) = exp (-1iQJ/kT)(JU~), (33) 

and, therefore, we have 

Thus, we have 
"If -tJ.v' = "If p.v' · (34) 

t 

WtJ.• (t) = ~~a;~ d't'exp (- ivQsT + iJ.twst 
l ).).' 0 

/• t• 't• > + ifLWtt') a-p.>. (flz) atJ.1-'(fl1)<,J >. ('r) I ;.-(0) . (35) 

It may be seen from (35) that for J.! "' 0 these 
functions vanish, since they contain a factor 
oscillating rapidly with frequency w8 • On taking 
into account the fact that 

we obtain for lJ! 011 the expression 
t 

"11"0• = ~ a2 ~ d't'e-Mls~ {cos2 01 <J ~ (-r) J ~ (0)) 
l 0 

+ sin2 01 <J ~· (-r) /~" (0))}. (36) 
AZ* AZ* The quantity <Ix ( T)Ix ( 0 )> is the usual re-

laxation function for the nuclear system introduced 
in the linear theory of Kubo and Tomita. 7 On sub-

AZ* stituting in place of Ix ( T) the solution of (29) up 
to quantities of the second order in :~tfntT ;11, we 
obtain: 

(1~· (-r)l~· (0)) = +<El~ ){exp (- iQI- <Dt),; 

(37) 

The parameter Cf:>Z has the meaning of an inverse 
relaxation time determined by the interactions 
within the nuclear system. For t greater than 
the time of occurrence of the relaxation processes 
in the electron system the value of the integral 
(27) will not be altered if t is allowed to go to 
infinity, while 

""'a~ (J)/(11 +1) . 2 f) 
"~~"o. ±I= LJ3 02 sm t 

l s 

± i ~ ~ 11 (~ + i) ="If'+ iW". 
I s 

(38) 

Formula (38) has been obtained in the approxi­
mation (QI /ns )2 « 1, which holds practically 
always. 

On utilizing (34), and on taking into account 
the fact5 that 

(39) 

we obtain in the approximation linear with respect 
to tinp /k:T the desired equation of motion for the 
magnetization of the electron system: 
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d < Af> i < AT T > "" dt M =--,;; [M,3Co] -iLJllov(~)(«Do .. 

(40) 
p.vv' 

If the hyperfine interaction is absent then equa­
tions (40) agree with the equations obtained by 
Tomita. 5 As was shown in that paper, in the case 
of a rapidly fluctuating lattice they reduce to 
equations of the Bloch type. 

4. COMPLEX SUSCEPTffiiLITY OF THE 
ELECTRON SYSTEM 

As the nuclear system approaches resonance, 
a change in the absorption of energy from the 
microwave field by the electrons occurs which is 
described by the system of equations (40). In 
experiments this change is observed under the 
condition of resonance of the electron system ws 
= I Ys I Ho· In this case after simple but awkward 
operations of commutation and summation Eqs. 
(40) assume the form 

0 

(41) 

where xo = J.Lt s ( s + 1 )/3kT is the static electron 
susceptibility. In the derivation of (41) we have 
neglected second-order perturbation-theory terms 
which lead to shifts of the resonance frequency. 

In the case under consideration5 cl>x = cl>y. On 
introducing the notation 

<Dx = <Du = I/T2, 

we obtain 

1¥' = I/T', (42) 

dM; t 1 1 ) T hs 
dl -l- \r. =t= T' Mx = 'Xo T.' 

dM~ ( 1 1 ) T s T 
----;[~ + T. =t= T' M0 - r. h Mz = 0, 

dMI s T M!" Ho 
dl + r.h Mv + 'G" = 'Xor1 • 

(43) 

Equations (43) differ from the Bloch equations in 
the rotating coordinate system under the conditions 
of resonance by terms containing T'. The expres­
sions for T1 and T2 determine the usual-

longitudinal and transverse-relaxation times, and 
have been evaluated by Tomita. 5 The time T' is 
due to the presence of the hyperfine interaction. 

In the stationary state ( Mjf = -MJ = Mt = 0) 
we have 

MI = x:h·, M~ = x:h·, MI = 'XoHoZ'f, (44) 

where 

(45) 

is the real, and 

x: = ')(.0T2r_Ho/(1 + (r.h•)2TlT.=t= T2/T') (46) 

is the imaginary part of the complex susceptibility 
of the electron system, and 

Zi ={I+ T1T2 (rsh•)2/(1 =t= T2/T')f1 (47) 

is the saturation factor. The minus sign corre­
sponds to the transitions between the sublevels of 
the hyperfine structure corresponding to ms = J2, 
while the plus sign corresponds to the transitions 
with ms = - % ( cf. diagram). In accordance with 
(30), (31), (38) we have 

i t 11 (11 + 1) <r~h1 )1 1 

F = 3 ~a' T~ (ish")• l<TsHo ±also)- ro/)• + r$2hl2 

(48) 

where 1/T~ = ci>l is the transverse relaxation time 
for the nuclear system. 

The expression for 1/T' has a resonance char­
acter, and attains a maximum when the frequency 
of the radio frequency field 

(49) 

corresponds to the interaction energy of the un­
compensated electron with one of the neighboring 
nuclei (Il ). The number of maxima and the dis­
tances between them are determined by the specific 
configuration of the system. 

Thus, as the frequency wr is varied the satura­
tion parametersZ~ will vary in a resonance fashion, 
diminishing (plus), or increasing (minus) the signal. 
By observing the absorption of energy from the 
microwave field, it is possible to find a number of 
maxima corresponding to the resonance values (49) 
of the frequency wr. 

The variation of x" depends on a~ and on the 
value of the ratio of the relaxation time of the 
electron system T 2 to the relaxation time of the 
nuclear system T~. The longer is the time T 2, 

the more slowly will be upset the changes produced 
in the electron system by the hyperfine interactions. 

Therefore, double resonance experiments of 
such a kind are carried out at low temperatures. 4 
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The theory developed for I= 72 exhibits the 
main features of the phenomenon observed experi­
mentally and can be generalized to the case I> ]2. 
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