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Integral equations for KN and KN scattering in low angular momentum states are derived 
in the Mandelstam representation on the basis of dispersion relations for forward and back­
ward scattering. An approximation is used in which the equations for KN and KN scattering 
are uncoupled. An estimate of the contribution of the d3; 2 wave is given in terms of the s­
and p-wave amplitudes. 

l. Starting from the Mandelstam representation 
for KN scattering processes, MacDowell1 has 
studied the analytic properties of partial wave 
amplitudes. In this work we derive integral equa­
tions for the s-, p- and d-wave amplitudes for 
these reactions. 

In contrast to the program of MacDowell, 1 and 
the procedure used by Chew and Mandelstam for 
1r1r scattering, 2 we have made use of fixed-angle 
dispersion relations to derive the integral equa­
tions for the partial waves, in particular the dis­
persion relations for forward and backward scat­
tering. This permits one to avoid a number of 
serious difficulties encountered by Chew and Man­
delstam, and to the study of which a number of 
papers were devoted.3•4 

In accordance with the general idea of Mandel­
starn we consider the following reactions: 

I. K + N ---+K' + N', 

II. i(' + N ---+K + N', 

III. K' + K---+ N + N'. 

The two-particle unitarity condition relates the 
amplitude for the reaction II to the amplitude for 
the process 

K+N---+Y+n 

(where Y denotes a A or ~ hyperon), and the 
amplitude for the reaction III to the amplitudes for 
the processes 

R + K---+ rt + rt, rt + rt---+ N + N. 

These three processes have been studied in 
detai16•7 and we assume in our work that the am­
plitudes for these processes are known; in par­
ticular one may take into account, for example, 
the contribution of the pole term or make use of 
the experimental data as analysed by Dalitz. 8 

The invariants introduced by Mandelstam9 are 
given for the reactions I, II, III by 

s = M 2 + m2 + 2k2 + 2 V (k2 + M 2) (k2 + m2), 
(1.1) 

I. s = M2 + m2 - 2k2z- 2 V (k2 + M2) (k2 + m2), 

t = -2k2 (1-z), z=:coscp; 

s = M 2 + m2 - 2k2z- 2 Y(k2 + M 2) (k2 + m2), 

II. s = M 2 + m2 + ik2 + 2 Y(k2 + M 2 ) (k2 + m2), (1.2) 

t = - 2Ji2 o - 2). z =cos cp; 

III. s = M2 - m2 - 2q2 + 2xpq, 

:S = M2 - m2 - 2q2 - 2xpq, 

t = 4(m2 + q2) = 4(M2 + p2), 
X=: COS 1'1. (1.3) 

Here k2, 1{2, q2 are the squares of the momentum 
transfer in the appropriate reaction (in the c.m.s. ); 
M is the nucleon mass, m is the K-meson mass; 
cp, cp, J are the scattering angles in the corre­
sponding reactions. 

The kinematic cut due to the square root in the 
expressions for s ( k2 ) and s ( k2 ) can be elim­
inated by symmetrization with respect to this 
square root (see Efremov et al. 5). However, as 
a result of peculiarities of the kinematics of KN 
processes, it is possible to take into account the 
nearest singularities on the negative cut also 
without symmetrization, by introducing a cut-off 
at - mk ~ - 13 J-1- 2• 

2. The matrix elements for the processes I, II, 
and III are expressed in the form 

where the function T has the structure 

112 

T = A+~ r (ql + q2) B (rq = roqo- yp). 

The function A depends on the isotopic spin of 
K and N: 
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A = A<+l A<~l 
+":K":N ' 

where A(±) are related to the amplitudes with 
prescribed values of the total isotopic spin of the 
KN system (A 0 and A 1 ) by: 

I. A0 = A<+l- 3A<~l, A1 = A<+l + A<~l; 
II. A0 = A<+l + 3A<~l, A1 = A<+l- An; 

III. A0 = A<+l , A1 = A<+l + 2A<~>. 
The function B is related to B<+>, B<~l and B 0, B 1 

by analogous formulas. 
For process I the quantity uTu has the form 

uTu = (4:rtW I M) xt. {f1 + k~2 (aqr) (aq2) f2} XN 

(the formula for process II is obtained from above 
by the substitution k2- 12, f- f), where W is 
the total energy. The connection between f1,2 and 
A, B is given by 

I. f 1 = a A + ~B, 
II. f1=aA-~B, 

where 

f 2 = - r A + {)B, 

~ = -yA-{)B, 
(2.1) 

a = (p0 + M) f8:rtW, 
r =(Po- M) I 8:rtW, 

~ = (P0 + M) (W- M) I 8:rtW, 
{j = (P0 - M) (W + M) I 8:rtW, 

and Po is the nucleon energy. 
(2.2) 

The functions f 1,2 are connected with the partial 
wave amplitudes by the relations 

f1 (k~z) = ~ Ut+p;+1 (z)- ft_p;_1 (z)}, (2.3) 

f 2 (k~z) = ~ Ut-- ft+} P; (z). 

Taking into account contributions from partial 
waves up to f2~ we find that (f1 2 ( ±) =ft 2 (k2, z 

' ' = ± 1) ): 

fo = f {fr( +) + fr(-)} + + <f2 ( +)- f2(-)}, 

f1~ =+{fr(-+)-fr(-)}++{f2(+)+f2(-)}, (2.4) 

fl+ = f {fr(+)- fr(-)}, f2- = -7;{f2(+)- f2(-)}. 

The unitarity condition for process I has the 
form 

Imfl±=klfl±i2 -

For the reaction II we obtain 

Imf1± = klft± 12 + ky I Ft± j2 , 

(2.5) 

(2 .6) 

where Fz± are the partial amplitudes for the 
process KN- Yrr. The quantity ky is determined 
by the formula 

.k~ = + s~1 {s- (My+ 11 )2} {s- (My - 11)2 }, 

where My, JJ. denote respectively the hyperon and 
pion masses. 

For the partial amplitudes for the process II 
we have 

J++= P~o~(l+ ~)(rq/f~Pt(X), 

J+~ = q'jj-.!t t ~\) (pq)1- 1 f~ P)'> (x), (2. 7) 

and exactly the same formulas hold for the reac­
tion 1r1r - NN. 

Here J++ and J+- are helicity states for these 
two processes (see Frazer and Fulco7 ), which are 
in the case of reaction III related to A, B by 

J++ = (lf8:rtp0){- pA + qMxB}, J +- = (q I 8:rt) VI- x 2B. 
(2.8) 

For partial waves of reaction III the unitarity 
condition gives 

(2.9) 

where nl and T~ are respectively the partial 
amplitudes for KK- 1r1r and 7r7r- NN; q~ = q2 
+m2-JJ.2. 

3. The double Mandelstam representation for 
the function B(±) ( s, s, t) is of the form 

(±) - ) ( 3) 1 \' B (s, s, t = P A+ _ 1. Pr. + n:" .\ ds' 
(M+m)' 

X ~ 
(MA+~-<)' 

- b(±, (s' s') 
ds' 12 , 

(s'- s) (s'- s) 

.b<±l (s' n 
dt' 23 • 

(s' - s) (I'- I) 

1 (' ' b(±) (I' s') 
+ n:" ~ dt' ~ ds' (I'~ I) (s:- s) . 

4~-<2 (M+m)' 

(3.1) 

Here Py are the pole terms: 

4Py = g~I(M~- s ). 
The renormalized coupling constants g~ and g~ 
are determined as residues at the poles of the 
function B ( s, s, t) for the second process in 
isotopic spin states 0 and 1 respectively. 

An analogous representation holds for the 
function A(±) (s, s, t) with the pole terms multi­
plied by ( M ± My); the plus sign goes with scalar, 
the minus sign with pseudoscalar, K mesons. 
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FIG. 2 

The boundaries of the region in which the 
spectral functions fail to vanish will be calculated 
on the basis of considerations presented by Mandel­
stam.10 The nearest singularities are given by 
diagrams of the type shown in Fig. 1. In the plane 
of the invariants they correspond to the curves 
shown in Fig. 2 (the point A has as coordinates 
s ~- 2011-2, s ~ l131J. 2, t ~ 251J.2 ). The curve r 
is symmetric under the exchange of s and s. The 
curves r', r" correspond to other diagrams. 

The cuts for the functions A (k2, z) and 
B ( k2, z) for the case of process I are shown in 
Fig. 3. The curve P corresponds to two poles at 
k2 = k\--, at that for z = + 1 one has k~ = - l11J. 2, 

k~ =- 12.15 IJ. 2• 

The cuts in the case of process II are shown in 
Fig. 4. Here P denotes poles at K2A = - 8.9 11- 2 

and ~ = - 7.2 11- 2• The cut due to the process KN 
- Y1r starts at - A.=- 5.4~J. 2 ; this cut is a con­
sequence of the inequality (My+ 11- ) 2 < ( M + m )2• 

In the representation (3.1) the integration over 
t starts at 41J.2, whereas the kinematic cut due to 
the root in Eqs. (1.1) and (1.2) does not start until 
the square of the K -meson mass is reached, so 
that the interval along the negative k2 or 1(2 axis 
from - m2 to -11-2 remains free of kinematic 
cuts. Therefore in what follows we restrict inte­
gration over negative k2 or 12 to the interval 

0 
-- J 

-- 2 
0--~-----------4~~~~~~--~----· 

m 

-M 

FIG. 3 

FIG. 4 

[- m2, - 11- 2 ]. We note that all kinematic coeffi­
cients a ( k2 ), {3 (k2 ), etc. remain real along this 
interval and do not give rise to any new singulari­
ties. 

In view of the analyticity properties (see Fig. 
3 and 4) the Cauchy formula can be used for 
A(±)(k2, z = ± 1), B(±)(k2, z = ± 1) and 
A{±) (12, z = ± 1 ), B{±) (P, z = ± 1 ). As an exam­
ple we write out the dispersion relation for 
B(±) (k2, + 1) (k2 = v, 1(2 = 11): 

UJ 

B<±>(v, +I)= ~ B\f=> (v) + ~ ~ v~~ vIm s<±l (v', +I) 
y 

I'' 
-1- _!_ ~ ~ImB<±l(v' ' I) 

rt ~ v'- v ' 1 ' 
(3.2) 

-m' 

where 
~ 2 

"'s<±l v) - gA - _:_ ( 3) g~ 
L.J Y ( - 4h (v A) (v A- v) ' - 1 4h (v~) (v~- v) ' 
y 

h (v) = 1 d~ s(v) I· 
Let us note that B(±) ( v, - 1) has no pole terms, 
and that in the case of process II the integration 
along the right hand cut begins at -A.. 

Introducing the abbreviations a' = a ( v' ), ay 
=a(vy), ... and 

~A~±>= 2] (M ± Mv) B~±> 
y 

(in what follows we shall omit the summation sign 
~),we obtain with the help of Eqs. (3.2), (2.4), and 
y 
(2 .1) the equations for some of the low partial 
amplitudes for the process I: 

l+l 1 <±> 1 3r:! " ) B<±l fo- (v) = 6 (3ay- rv) Ay + 6 ( f'Y + uy y 
00 

+ ~ ~ v~::_ vIm f~±> (v') 
0 

-!'-' 

, ~ ~ v~~v { ~ (3a'- r') Im A<±>(v', +I) 
-m' 

+ ~ (3W+o')ImB<±>(v',+l) 

+ ~ (3a' + r') Im A<±> (v', -I) 

+ ~ (3W-o')ImB<±\v',-I)}, (3.3) 
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-(-)) 1 3 )A(+) I 1 B 3")B(±) il=- (v = 6 (C!.y- YY ,~ '6 (. Y + uy Y 

00 

+ ! ~ v~~ vIm fi!l (v1
) 

0 
-p.2 

, 1 \ dv' { 1 ( 1 3 1) I A(±) ( 1 -1 1) ':1 ~ v·- v T e~. - r m v ' -
-m' 

+{ (W + 31\ 1 ) Im s<±l(v1
1 + 1) 

-{(3r' +e~.I)ImA<±J(v',-1) 

+ ! (3111
- W)Im s<±J (v 1

, - 1)} 1 

co 

(3.4) 

t(±) (v) = _i__C/. A(±)+ _i__ (;) s<±J + _i__ \ ~ Imf(±) (v1 ) 

H 6 Y Y 6 tJY Y n ~ v'- v 1+ 
-~· 0 

+_!__I ~{_i__C/.1 ImA<±>(v' + 1) 
n .) v'- v 6 1 

-m' 

+ { W Im s<±l (vii+ 1)- -}e~.' Im A(±l(v',- 1) 

-{wrms<±>(v1
, -1)}, (3.5) 

co 

f~±l (v) = __!__ (- rvAy<±l + llvB~±J) + _i__ \ ~ Im f~'!:} (v') 
- 6 n.)v'-v 

-~· 
0 

+ ~ ~ v~~v{-~r'ImA<±>(v' 1 + 1) 
-m' 

+ -}11 1 ImB<±>(v1
1 + 1)+i-riimA<±l(v1 , -1) 

-{-II1 ImB<±>(v1
1 -I)}. (3.6) 

Here Im f[± is determined by Eq. (2.5}. 
In order to express the integrals over negative 

values of k2 in terms of quantities referring to 
processes II and III we need to relate the variables 
of the first process to those of the second and third: 

z(v,Z)=1-~ (1-z), 
v 

-( ) M•+m2 +v(1+z)+2zV(v+M2)(v+m') (3.7} 
v 'VIz = v ,, 

M2 + m•- 2vz- 2 r (v + M2) (v + m2) 

and 

X (v
1 

z) = _ 2v (1 + z) + 4 Y (v + M') (v + m•) 

V4M 2 + 2v (1- z) V 4m2 + 2v (1- z) 1 

q2 (v, z) = -m2 - ~ (1-z). (3.8) 

Therefore 

ImB(v,z = + 1) = ImB(v(v, + 1), z = + 1), (3.9a) 

where Im B (v, + 1) is expressed in terms of the 
partial amplitudes fz± with the help of Eqs. (2.1)1 
(2.4), and (2.6). In just the same way 

ImB (v, z = -1) = ImB (q2 (v,- 1), x =- 1) (3.9b) 

is expressed in terms of the partial amplitudes fi 
of the third process with the help of Eqs. (2. 7), 
(2.8) and (2.9). 

The equations for fz± for process II are 
analogous. The pole contribution to the equation 
for ~±) and ~~) is of the form 

(3.10) 

and 

(3.11) 

respectively; for other partial amplitudes the con­
tribution of the pole terms vanishes. The connec­
tion between the processes gives for the negative 
-region 

Im B (v, z = + 1) = Im B {v (v, +I), z = + 1} (3.12a) 

and 

Im B (v, z =- 1) = Im B {q2 (v~- 1), x =- 1 }. (3.12b) 

With the help of Eqs. (2.1), (2.4}, and (2.5) 
Im B ( v, + 1) is expressed in terms of the partial 
amplitudes fl±• and Im B ( q2, - 1) in terms of 

f~:' 
Since the expansion in partial waves of the 

imaginary part of the amplitude converges better 
than the corresponding expansion of the real part, 
we may neglect in the expressions (3.9) and (3.12) 
the contributions from the d waves.* In that case 
Eqs. (3 .3) - (3 .5) do not depend explicitly on the 
d waves. The same approximation in Eq. (3.6) 
gives for f2_ an expression which depends only on 
s and p waves, and so allows an estimate of the 
size of this amplitude. 

We note that the integral equations for KN and 
KN scattering derived by us are not coupled to 
each other. 

The authors express their gratitude to D. V. 
Shirkov, A. V. Efremov and Chou Hung-Yiian for 
valuable discussions. 
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