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Pair correlation effects are studied for nuclei that are close to closed shell. Equations for 
the Green's functions are obtained. It is shown that these equations are valid to within cor
rections of the order A - 1/3. A possibility is indicated for testing the results by means of 
stripping or pick-up reactions. 

1. INTRODUCTION 

THERE are two main methods commonly used in 
the theory of superconductivity: the canonical
transformation method, developed in the "Bogolyu
bov papers", 1 and the Green' s-function method 
proposed by Gor'kov. 2 The canonical-transforma
tion method has been used by Belyaev3 to study the 
effects of pair correlation in spherical nuclei. In 
papers by Migdal and his co-workers4•5 the Gor'kov 
method has been applied to the study of the influ
ence of superfluidity on the values of the moments 
of inertia of nonspherical nuclei. 

In all these calculations, however, an essential 
assumption is that there is a large number of cor
related pairs. For spherical nuclei this means a 
large number of particles in unfilled shells, and 
for nonspherical nuclei it means that the condition 
pt::. » 1 must hold, where p is the density of one
particle levels near the Fermi surface and t::. is a 
parameter that characterizes the energy of the 
pair correlation. It is interesting to examine the 
properties of nuclei that are near closed shells, in 
which the stated assumptions are not satisfied be
cause of the smallness of the number of nucleons 
above the closed shells. This situation calls for 
more accurate methods, which make it possible to 
treat pair-correlation effects in this case also. 

The purpose of the present paper is to general
ize the Gor'kov method so as to find the Green's 
functions, the density matrices, and the pair-cor
relation energies in the case of nuclei that are near 
closed shells. 

We shall assume that we can describe the mo
tion of the nucleons in the nucleus by using the 
Hamiltonian 

(1) 

where A. is a complete set of quantum nuplbers 
necessary for the description of the state of a nu-

cleon (the sets A. and - A. differ from each other 
only in the sign of the projection m of the total 
angular momentum of the nucleon along some ar
bitrary axis), EA. are the eigenvalues of the energy 
of the nucleon in the self-consistent field U ( r ): 

Ho(j!l. (r) = e~.qJ, (r), H0 =- (n 2j2meff) \7 2 + U (r); 

meff is the effective mass of the nucleon, and gA.A1 
is the interaction matrix element that leads to 
pairing. The stated Hamiltonian assumes that the 
interaction between nucleons that leads to pairing 
occurs in states with opposite signs of the angular
momentum projection m. The part of the interac
action that does not lead to pairing is taken into 
account by the introduction of the self-consistent 
field and the effective mass of the nucleon. 

For the further exposition we need Green's 
functions of the system of N nucleons, defined in 
the following way: 

G~+ ('t) = -- ie'EN' (ll>Na~.e-tH' a~ IDN), 't' > 0, 

G~- (-r) =£'EN' (ll>Na~e'H'a~.ll>N), -r< 0; 

G~ (-r = 0)- G~ (-r = 0) =- i. (2) 

Let us also define the functions 

F~+ ('t')=(-l)"iEN'(IDN+2a~,,e-iH'a~<DN), -r>O, 
N- )-)., -tEN~ rr.. + iH- + rr.. < F~. (-r) = (-1 e ( ..... Na~.e ·a_I. ..... N-2), 't' 0; 

p~+2- (0) = p~+ (0), (3) 

where il>N is the wave function of the ground state 
of the system of N fermions, EN is the energy of 
this state, and ( - 1 )A = sign A.. 

By the use of the definitions (2), (3) it is easy to 
obtain the spectral expansions of the Green's func
tions. In particular, we have for the functions 
FA_(T ): 

FN+ ) 1.~ rr.. + ), ('t' =(-!) "'--('VN+2a_/.<DN+I,s) 
s 

X (IDN+I.sa~IDN)exp{-i(£N+I.s-EN) 't'}, 

F~- (-r) = (-If" ~ (ll>Na~ IDN-1. s) 

X (<DN-1, sa~~. ll>N-1> exp {- i (EN- EN-I. s) T}. (4) 

194 
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Using the Hamiltonian (1), we get the equations 
for the functions (2) and (3): 

( . j) )oN+ () ·" iBN~ if> + b -iH• +if> ) t ih- E), 1. 1' + t L.J g~.~.,e (wNa-1. ~.,e ·a~.wN) = (, 
)., 

(i ~-2ft~ + e~.) Ff+ (1') 

+ 2] (-lfl. g1.,1./EN~ (<!JN+2b~,a1.e-iH~ a~ <!JN) = 0, 
)., 

b~. =a-~. a~., 2ft~= EN+2 -EN, 

By definition 

N =- i~Gf- (0). 
I. 

(5) 

In order to get equations analogous to the Gor'kov 
equations for the Green's functions, it is necessary 
to find a connection between the functions G~ and 
F~. Such a connection can be obtained if we can 
calculate the mean values of products of four Fermi 
amplitudes that appear in Eq. (5). The main con
tent of the present paper is the calculation of these 
averages in the approximation A - 113 for nuclei that 
are near closed shells. It must be emphasized that 
in the existing theories the parameter on which all 
the approximations are based is the large number 
of places in the subshell that is in the course of 
being filled ( Q = 2j + 1 » 1 ). This limitation does 
not exist in the method that is developed in the 
present paper. The possibility of writing the equa
tions for the Green's functions G~ and of the fol
lowing recurrence scheme for their solution was 
pointed out by Migdal. 6 

2. THE GREEN'S FUNCTION FOR TWO NUCLEONS 
ABOVE A CLOSED SHELL 

We begin the accomplishment of the program we 
have indicated with the treatment of nuclei with 
two nucleons above a closed shell. We shall as
sume that there is no pairing in the nucleus that 
corresponds to the doubly closed shell. Let q,0 be 
the wave function of the doubly closed shell. If we 
neglect the perturbation of the self-consistent field 
by the addition of one nucleon (an A - 1 effect), 
then the wave function of such a nucleus can be 

+ 
written in the form q,1 = aA.0q,0, where q, 0 is the 
state in which the odd particle is placed. 

The wave function of the nucleus with two nu
cleons above the closed shell already cannot be 

represented in as simple a form as the wave func
tion of the nucleus just mentioned. For two nu
cleons above the closed shell there are already 
important pairing effects, which lead to the 
''smearing out'' of the pair of particles over an 
entire subshell of the given shell. Owing to this 
we must write the wave function of the ground state 
of a nucleus with two nucleons above a closed shell 
in the form 

"00 +· "+' <D2 = L.J CjCjmj-mbjm<Do = L.JCI.bl. <Do, (6) 
j, m ), 

± 
where bA. = at a! A. is the operator for production 
of a pair, I cj 12 is the probability of finding the 
pair in the subshell j, and q,0 is the wave function 
of the closed shell as perturbed by the presence of 
pairing; the summation is taken over all states A.. 

After these comments, let us go on to the deri
vation of the equations for the Green's function 
Gt. On the basis of the form of q, 2 and the com
mutation rules, we have in the main term of the 
second equation in (5): 

(7) 

Let us consider the first term in the right member 
of Eq. (7). The effect of the pairing on the closed 
shell can be treated by perturbation theory. There
fore for T = 0 

Here the difference between q,0 and q,0 is import
ant because of the summation over A.1• 

The dependence of this four-pole on T is asso
ciated with the fixed index A.. Therefore the time 
dependence of the first term is, in first approxima
tion: 

* " ' iH< +1 * i(E,+ •),)< " , 
2c~. L.J gl.),, (<D0 a-1. e a-t.. b~.,<D2) = 2c,e L.J gu, (<D0 b~.,<D2). 

~ ~ 

The difference between q,0 and q,0 is due to the 
transition of nucleons from the filled shell into the 
unfilled shell. For this reason there occurs in the 
second term of Eq. (7) an additional oscillating 
factor of the form ei2Wo7 , where w0 is the dis
tance between the shells. 

By means of the commutation rules we find that 
for T = 0 the second term is of the order of magni
tude of 

C), (<!J~b,,<!J2), 

Thus for T = 0 the first and second terms in Eq. 
(7) are of the same order of magnitude. Solving 
Eq. (5) for Gr ( T) by using both the first and the 
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second terms, we can convince ourselves that the 
ratio of the contribution of the second term to that 
of the first amounts to a quantity 

~ (e1o. -1-12)/(e1o. -1-12 + Wo), 

where 2JJ- 2 = E2 - E0• 

This ratio is small if the states t.. are close to 
the Fermi surface (Et..- J.J- 2 « w0 ). Therefore to 
accuracy ~A -i/3 the equation for or ( T) is of the 
form 
1 a ) 2- * - i(2fL,- •)..)~ " , 
\i lh - e). G1o. ('r)- i2c)..e Li gu, (<Do b,,,<D2) = 0. 

).., (8) 

It is convenient to put this equation in the form 

(iojiJ-r- e).) ar (-r)- ili;Fr (-r) = 0, 

).., 

(9) 

(10) 

where the summation is taken over all t..1 without 
exception. 

In Eq. (9) we have introduced the notation 

Fr{-r) = 2c~ (-If). exp {- i (2!-12- e).) 't'}. 

It is not hard to see that F~- ( T) can also be repre
sented in the following form: 

Fr (-r) =(-If 1o.e-iE,, (<D2a~iH""a~1o. <D~). (11) 

In order to find the Green's function from Eq. 
(9), we must determine Fr( T). For this purpose 
it is convenient to introduce the function 

with 
(12) 

Fr <o> = Fr (0), -r = o. 

Equations for the determination of Fr( T) and 
Ft ( T) follow from the equations (5) by a procedure 
like that used to get Eq. (9). These equations are 

(iojiJ-r- 21-12 + e).) Fr (-r) = 0, 

(ia;a-r- 21-12 + C).> Fr (-r) + il12a~+ <-r> = o, (13) 

where at< T) is the Green's function of the magic 
nucleus: 

By means of the spectral representations (4) we 
get the following solutions of the system (13): 

Fr(-r) = -+!12(e)..-1-12f1 exp{-ie)..-r}, 

Fr (-r) = - + li2 (e). -1-12f1 exp {- i (2!-12- e).) -r}. (14) 

Using Eq. (14), we get the solution of Eq. (9) in the 
form 

ar (-r) = i 1!12/2 (e). -!lz) 12 exp {- i (2!-12- e).) 't'}. (15) 

A comparison of the functions at ( T) and 
Fr( T) with their general expansions (4) shows 

that, as had been assumed, the excitation energy of 
the nucleus with one particle above the magic core 
is determined by the one-particle model, t:..E12 

= Et.. - EAo· Besides this, by means of the Green's 
functions ar and F~- we can obtain the following 
matrix elements: 

2J I (<D2a~ <Dls) 12 = I /:12/2 ( 8).. -1-12) 12, 

I2J (<D2a~ <Dls) (<Dlsa~ 1o.<Do) \ =I /:12/2 (e). -!-12) 1. (16} 
s 

where the summation is taken over all states il>1s 
that correspond to a fixed excitation energy t:..E1s 
= Et..- EAo· 

Since 

the formulas (16) can be simplified for states il>1s 
= a~sil>0 , and the two formulas reduce to one: 

(17) 

Thus the functions or and Fr found above do not 
contradict each other. 

The quantities J.J- 2 and £:.. 2 that appear in the ex
pression (15) for the Green's function are deter
mined from Eq. (10) and the normalization condi
tion for the Green's function. In Eq. (10} the sum 
over filled states can be included as a renormali
zation of the matrix element gt..t..1• If besides this 
we assume the renormalized matrix element to be 
constant and equal to g, we then get the following 
equation for the determination of J.J- 2 and £:.. 2: 

I = +1 i12J (e). -1-12r\ 2 = ~ jl12/2 (e). -1-12) 12, (18) 
), '· 

where the summation is taken over the states in 
the unfilled shell. 

We can obtain an estimate of the quantities J.J- 2 

and £:.. 2 by considering the limiting case of a single 
level (Sec. 4). In this case 

2(8)..-!-12) = !giQ, 1:12 = lglJl2Q, 

where Q is the degree of degeneracy of the level 
( n ~ A 113 ). Thus near a closed shell the density 
matrix 

p~) = 1 1:12/2 ( ,,, - !-12) 12 

is of the order A -i/3• 

3. THE GREEN'S FUNCTIONS OF ODD NEARLY 
MAGIC NUCLEI 

By using the results of the preceding section, it 
is not hard to find the equation for the Green's 
functions of odd nearly magic nuclei. Let us begin 
the discussion with the case of one nucleon above 
the closed shell. The wave function of the ground 
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state is 4>1 = a~0 4>0 • It follows from Eq. (5) that in 
this case Gr ( T) satisfies the free equation 

(ialoT:- E"A) Gf (r:) = 0, (19) 

and the equation for Gl +( T) is of the form 

(io I or:- e~.) G~+ (r:) + ibi.-"A,- t12Fr (r:) = 0. (25) 

Let us consider a nucleus with three nucleons 
above the closed shell. In this case the wave func
tion of the ground state is of the form 

(26) 
(iolor:- c1.) or (r:) = - ib1.-'A, ~ g1.,1.,eiE,~ (CD0b~.,e-iH~b~,CD0 ). 

i., c2o) where 

As was to be expected, pairing effects appear in 
the function Gl+ ( T) only for A. = - Ao• since the 
odd particle is in the state A.0• 

It is not hard to see that the right member of 
Eq. (20) cannot be calculated by the method of sum
mation over the intermediate states 4> 2s by leaving 
only the term in the sum that corresponds to the 
ground state 4> 2• In fact, we have for example 
< 4> 0~ b~ 4>0 > = 1, whereas < 4>0bA. 4>2 > < 4> 2b~ 4>0 > 
~A-1 (cf. Sec. 2). 

Let us try to find the function Gt ( T) by using 
the known solution for or ( T). Obviously' for 
A.~± A.0, 

Furthermore, 

a~: (r:) = o, a~;. (O) =- i. 

Therefore, in accordance with the spectral repre
sentation, the function at ( T) must have the fol
lowing form: 

Gt (r:) = i (bu,- 1 + b~.-~.,B) exp {- ic~.r:} 

- U'JI.-"A, B exp {- i (2f.12 - c:>.) r:}. (21) 

The first exponential corresponds to the free mo
tion of particles in the excited nucleus with two 
particles above the core and the second to the 
ground, paired, state of this nucleus. 

The coefficient B is determined by a com pari
son of the spectral representations for Gl- and 
at with the expressions (15) and (21); we get: 

B = I <CDla_~., CD2) 12 = I !1212 ( c"),- f.l2) /2. (22) 

Thus 

G~+ (r:) = i (b~.~.,- 1 +bA-A, I !1212 (c"A -112) 12 ) exp {-- ic~.r:} 

- i61.-"A, I tl2l2 (c"A -112) 12 exp {- i (2f.12- c:>.) r:}. (23) 
A comparison of this expression with the general 
expansion of Gl+ leads to the following relation 
(A.~ A.o): 

~I (CDlaACD2s) 12 = 1 -I !1212 (cl. -!12) J2 b~.-~.,., (24) 

where the summation is taken over all excited 
states 4> 2s that correspond to a prescribed excita
tion energy t.E2s = EA. - EAo + 2 ( EA.o - J-1. 2 ). Also 
it is not hard to see that the function ate T) de
fined by Eq. (23) satisfies the equation 

CD~ = ~ c;,b~ CD~ 
"A 

is a state with angular momentum zero, which in 
general does not coincide with the wave function 
4> 2 of the ground state, owing to the perturbing ef
fect of the third particle on the pairing. Obviously 
in the ground state 4>3 the one-particle state with 
angular-momentum component - A.o is a free 
state. 5 Therefore the Green's function for this 
state is 

G~~. (r:) =:::: 0. (27) 

It is also not hard to see that to accuracy ~A -1/3 

by taking off the odd particle in the state A.o [this 
process is described by the function G~ ( T ) ] we 
get a nucleus with two particles above the closed 
core in the ground state. It is not hard to make the 
calculation for this case, if in the equations of mo
tion we estimate the terms that arise owing to 
pairing by breaking the expression up into a sum 
over intermediate states and keeping only the 
ground states. By using the spectral representa
tion we thus get: 

G~~ (r:) = i exp {- i (E3 - £ 2) -r}. (28) 

For A. ~ ± A.o the Green's function Gt( T) is ob
viously determined like the function Gl- ( T) for the 
two particles above the closed core. In fact, by 
using the wave function 4> 3 of the ground state and 
the hypothesis that there is only one paired state 
for this nucleus, we find from Eq. (5); 

(ia I or:- c).) or (r:) - itlaFr (r:) = o, 
(io I or:- 2f.la + e~.) Fr (r:) = 0, 

(io I or:- 2f.la + e~.) Ft (A) + it13Gr (r:) = 0, (29) 
where 

A .._, 1.-"A a-
u3 = L gn, (- 1) 'F"A, (0). (30) 

In these equations the functions FA. ( T) are defined 
by the general formulas (3), and the respective 
spectral representations (4) hold for them. It fol
lows from these definitions that 

Fr (O) = Fr (O) = o for A=± A0 • (31) 

Therefore two terms ( A.1 = ± A.o ) are absent from 
the sum (30). 

The solution of the equations (29) obtained by 
using the spectral representation is (A. ~ ± A.o) 
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F~+ (-r) =-+~a (8).- flaf1 exp {- iE>.'t}, 

F~- (-r) =-+~a (8>.- flaf1 exp {- i (2fls- E>.) 't}, 

ar (-r) = i 1 ~a/ 2 (8>-- fla) l2 exp {- i (2fla- 8>-) -r}. (32) 

The quantities JJ-3 and D.3 which characterize the 
pairing in this nucleus are determined from the 
normalization conditions and Eq. (30). Recalling 
the relations (28) and (31), we have: 

1 = I g I ~' ( 1 - c~h>., - ~u.) / 2 ( 8>. - fla), 

(33) 

where g is the renormalized matrix element (Sec. 
2). 

By means of Eqs. (33) and (18) we can calculate 
the differences JJ-3 - JJ- 2 and D.3 - A2• In first ap
proximation we find: 

fls- !12 = ~; /4 (8>.,- !12), 

~s- ~2 = - T Qo [~2 /2 (8>., -!12)]4 ~2· 

It follows from this that the pairing energy in an 
odd nucleus with three particles above a closed 
core is smaller than the pairing energy in the pre
ceding even nucleus. 

4. THE LIMITING CASE OF A SINGLE DEGEN
ERATE LEVEL 

In the limiting case of a single degenerate level 
the derivation of the equations for the Green's 
function is decidedly simplified. This simplifica
tion arises from the fact that the wave functions of 
the ground and excited states are known in this 
case. 7 The resulting system of equations for the 
Green's functions is, for an arbitrary number N of 
particles in the given degenerate level: 

(io I o-r- 8>.- 2g) G~+ (-r)- iS;; F~+ (-r) = 0, 
(io I o-r- 211~ + 8>.) F~+ (-r) +iS';. G~+ (-r) = 0, 

(iO I o-r- 8>.) G~- (-r)- i~/: F~- (-r) = 0, 

(iO j o-r- 2fl~ + 8>. + 2g) F~- (-r) + i~~ G~- (-r) = 0. (34) 
The initial conditions are 

G~+ (0) = G~- (0)- i, flN+2 = fl;,, p~+2- (0) = F~+ (0), 

N =- i ~ G~- (0), ~% = ~gn, (- 1)>.->.,.p~± (0), 
A ~ 

g=gn. 

The equations (34) are obtained by breaking up the 
four-poles in Eq. (5) into sums over intermediate 
states. Because of the properties of the wave func
tions of the ground states, these sums contain only 
one term, which corresponds to the ground state. 

By means of Eq. (15) one can proceed by recur
rence to find the Green's functions for all the nu
clei that correspond to the filling up of the given 

level. The recurrence scheme is treated independ
ently for the even and odd nuclei. For the begin
ning of the recurrence scheme one needs to know 
the explicit form of the functions Ft ( 0) and 
Ft( 0 ), which are calculated by means of Eq. (3). 
Using the initial conditions and the spectral repre
sentation we get 

or ('t) = i (2- Q) Q-l exp {- i (E>.- 2g) 't}, 

or (-r) = i2Q-l exp {- i (8>. + gQ)-r}. (35) 

In this case the energy of the ground state of the 
nucleus with two nucleons in the unfilled level EA. 
turns out to be 

(36) 

For the first odd nucleus the pairing will mani
fest itself only in the state - A.o which is coupled 
with the state A.o in which the odd particle is placed. 
Therefore at ( T ) corresponds to the free motion 
of the particle 

Gf ('t) = ib>.A, exp {- i8>.'t}. 

At the same time ~+ ( r ) becomes unfree for A. = 
- A.o= 
G~+ (-r) = i (bn,- 1 + ~>.->., 2Q-1) exp {- i8>.'t} 

- i~u,-2Q-1 exp {- i (8>. + gQ) 't}. (37) 

In the case of a nucleus with three nucleons in 
the given level the wave function of the ground 
state can be written in the form 

<Ds = a~. <D~, (38) 

where A.o is the state in which there is an odd par
ticle, and q,2 differs from the wave function q, 2 of 
the second nucleus by a factor which is obtained 
from the normalization requirement for q,3: 

<D~ = VQ I (Q- 2) <D2. 

Using the wave function q,3, one can easily ob
tain expressions for the Green's functions of the 
third nucleus: 

G3;,(-r) = i [~ exp {- i [e~. + g(Q- 2)] 't} 

+ !;\:;- 2 exp {- i (81.- 2g) -r}J' a~-;., ('t) = 0, 

ar (-r) = i Q :_ 2 exp {- i [81. + g (Q- 2)] 't}, ').. =f= ± 'J..o; 

G~t,(-r) =- i [n ~ 4 exp {- i (8),- 2g) 't} 

+ ~ exp{-i[e~.+g(Q-2)]-r}J. 

By using the results for the second and third 
nuclei and the recurrence scheme which has been 
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indicated, one can obtain the parameters of a sys
tem with an arbitrary number N of particles. In 
particular, the energy of the ground state of a sys
tem with an even number of particles is 

(40) 

This expression agrees completely with the quan
tity obtained by Mottelson. 1 At the same time, the 
method of quasi -particles gives for this case an 
expression that agrees with Eq. (40) only in the 
limit Q » 1. 

CONCLUSION 

A direct experimental test of the results ob
tained here can be made by means of stripping or 
pickup reactions. In fact, a knowledge of the den
sity matrix gives direct information about the nu
clear matrix element that determines the cross 
section of the stripping reaction. For example, 
for the case of a nucleus with two nucleons above a 
closed shell 

P~2 ) = 2] I <ID2a[<Dls) 12 = J /12/2 (81.- f12) 12, 

where all the states s refer to a given level E/v 

If the independent-particle model were valid, then, 
for example, a pickup reaction could occur only 
from states corresponding to the single level EA.o· 

In the presence of pairing the pickup reaction 
can also occur from other levels E"A: For constant 
~ 2 the ratio of the squares of the corresponding 
matrix elements is given by 

I (81-,- f12) I (81-,- J.12) 12· 

Since Ef1.1 - EA.o is a quantity of the order of EA.o 
- J.i- 2, this ratio is of the order of unity. Therefore 

. 
in principle the pickup reaction can occur for all 
states inside the shell that is being filled up. In
cidentally, such reactions can be used to test the 
hypothesis of the constancy of ~. The considera
tions that have been given are of course valid for 
all spherical even and odd nuclei. If, however, the 
number of nucleons above the closed shell is large, 
other effects become important, which can mask 
the pair-correlation effects. 

In conclusion the writers express their deep 
gratitude to A. B. Migdal for proposing this prob
lem and for many suggestions. 
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