INVESTIGATION OF THE RADIATIONS FROM Zn⁶³

S. S. VASIL'EV, NO HSIENG CH'ANG, and L. Ya. SHAVTVALOV

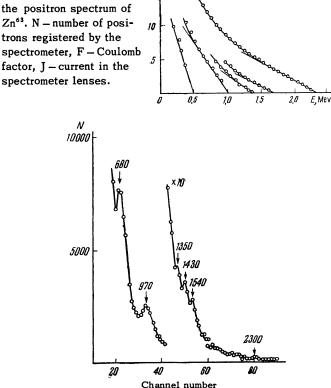
Institute of Nuclear Physics, Moscow State University

Submitted to JETP editor September 12, 1960

J. Exptl. Theoret. Phys. 40, 475-476 (February, 1961)

The β^{+} and γ spectra of Zn⁶³, which possesses a half-life of 37.6 ± 0.3 min, were investigated. The β^+ spectrum consists of five components with end-point energies of 500, 1020, 1400, 1710 and 2360 kev. The observed 680-, 970-, 1350-, 1430- and 2300-kev γ transitions agree on the whole with the β^+ spectra.

 ${
m T}_{
m HERE}$ have been relatively few investigations of Zn⁶³ to date.¹⁻⁴ These investigations have established the presence of three partial β^+ spectra. The Zn⁶³ was investigated by using copper targets of natural isotopic composition.


We used enriched targets containing up to 98.1 percent Cu⁶³ to investigate the β^+ and γ spectra of the Zn^{63} obtained from the reaction $Cu^{63}(p, n)$ Zn⁶³. The irradiation was in the 120-cm cyclotron of the Nuclear Physics Institute of the Moscow State University with 6.7 Mev protons for several minutes. The investigation of the Zn⁶³ spectra began 3-5 minutes after the irradiation.

The β^+ spectra of Zn⁶³ were investigated with a β spectrometer with a thin magnetic lens with an end-window β counter. The Fermi plot of the obtained β^+ spectrum (Fig. 1) can be resolved into five linear sections, corresponding to the individual β^* spectra with end-point energies 500 \pm 30, 1020 \pm 30, 1400 \pm 30, 1710 \pm 30, and 2360 \pm 30 kev. The relative intensities of these partial β^+ spectra are respectively 2, 10, 10, 10, and 68.

The γ spectrum of the Zn⁶³ was investigated with a luminescence spectrometer. The pulses from the FÉU-1S photomultiplier with NaI(Tl) crystal were fed to the input of a 100-channel pulse-height analyzer type AI-100 ("Raduga"). Figure 2 shows the γ spectrum of Zn^{63} we obtained. In addition to the intense annihilation peak, γ lines with energies 680 ± 10, 970 ± 10, 1350 ± 20, 1430 \pm 20, and 2300 \pm 30 kev were observed. In all probability, a γ line with energy 1540 ± 20 kev is also present. The half-life measured by the annihilation peak was found to be 37.6 ± 0.3 minutes, the same value as obtained for the remaining γ lines, within the limits of experimental error.

Our experimental data on the β^+ transitions differ from those of Huber et al.,¹ who indicated only β^+ transitions with end-point energies 470,

15 FIG. 1. Fermi plot for the positron spectrum of Zn63. N - number of positrons registered by the spectrometer, F-Coulomb factor, J-current in the

(N/J3F)1/2

FIG. 2. γ spectrum of Zn⁶³.

1400, and 2360 kev. Recently Ricci et al.⁴ proposed a probable decay scheme for Zn⁶³, starting out with the energy and relative intensity of the γ rays. In the opinion of these authors, β^+ transitions with end-point energies 950 and 1700 kev, close to those obtained by us, should exist in addition to those indicated by Huber et al. Thus, the β^{+} transitions which we observed apparently confirm the decay scheme given in reference 4.

¹Huber, Medicus, Preiswerk, and Steffen, Helv. Phys. Acta **20**, 495 (1947).

² Pasechnik, Barchuk, Totskii, Strizhak, Korolev, Gofman, Lovchikova, Koltypin, and Yan'kov, Second Geneva Conference, 1958. Papers by Soviet Scientists. 1. Nuclear Physics, M., Glavatom, 1959, p. 330.

³ Hayward, Farrelly, Hoppes, and van Lieshout, Nuovo cimento **11**, 153 (1959).

⁴Ricci, Girgis, and van Lieshout, Nuovo cimento 11, 156 (1959).

Translated by J. G. Adashko 71