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The position of the singularity is determined for diagrams that describe the scattering of two 
particles. 

IN studying the scattering amplitude for two par
ticles, one needs to investigate the distribution of 
the singularities of the Feynman diagrams. The 
purpose of the present paper is the determination 
of the positions of the singular points of certain 
Feynman diagrams. The position of the singular 
point of a diagram can be determined by the solu-
tion of the system of Landau equations, which have 
been investigated in a number of papers.i-4 

Suppose we have a certain Feynman diagram 
(Fig. 1) with four free lines. Its singular points 

FIG. 1 

singular point. 
Let us consider the diagram of Fig. 2. It is 

symmetrical with respect to the two transforma-

are determined by the system of Landau equations: tions 

~q= p, 

L; q = 0, 

L; exq = 0, 

(1) 

(2) 

(3) 

(4) 

(5) 

where q are the internal four-momenta, p are the 
external four-momenta, m are the masses of the 
internal particles, and a are the Feynman param
eters. 

Equations (1) and (2) express the conservation 
of four-momentum at the external and internal 
vertices of the diagram. 

The solution of the system of equations for a 
symmetrical diagram has a remarkable property: 
if a replacement qi - ± qi' takes the diagram into 
itself, then 

ex,= ex,,, q,qk = ± q,,q~~.., q,qk, = ± q,,qk. (6) 

The sign of the scalar product is determined by the 
directions of the vectors in the diagram. As has 
been shown in a paper by Okun' and Rudik,2 for dia
grams with four free lines one still has to deter
mine the values of the squares of the external 
four-momenta, 

Pi= Mi, p; = M~, Pi= Mi, p! = M~, (7) 

after which one can determine the connection be
tween W2 =(pi+ p2)2 and Q2 =(pi+ P3)2 at the 

ql .,_.- ql, q2 +-7- q~, q5 ~' qG, q; <---> qg, q3 <->- q3; 
ql <-+- qa, q2 <---> -- qz, q~ <--->- q~, q; <---> q,, q6 .,_. qg. 

Therefore ai = 0!3 = a, 0!2 = 0!4 = {3, 0!5 = as = 0!7 
= a 8 = 1. The last relations can be written if we 
omit Eq. (5), as we shall do. 

The equations (3) have the form 

Since ql = qj =PI= p~ =Pi= P~ = M2 and ~ = q~ 

(8) 

= q~ = q~ = qi = q~ = 1, we can get from Eq. (8) the 
values of the scalar products by taking the squares 
of the equations: q56 = 1 - !a2M2, q57 = 1 - !f32, 
where qik = qNk· 

If we multiply the equations (8) respectively by 
qi and q4 and use the relations qi5 = - qiS• q47 
= - ~5 , which follow from the symmetry of the 
diagram, we get qi5 = !all2, q47 = !f3. 

To determine the quantity q58 we use the equa
tion of conservation of four-momentum at the in
ternal vertex, which we multiply by q5: 

qoB = - 1 - q56- q,, = - 3 --1- + (~2 + ex2J.L 2 ). 
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FIG. 3 

The other quantities <lik are determined from the 
equations obtained by multiplying (8) by various 
four-vectors q: 

q18 = (2~2 + <X2J.t2 - 8) I 2a, q13 = (2~2 + a 2J.t2 - 8) I a 2 , 

q4s = (8- 2a2J.t2- ~2) I 2~, q24 = (~2 + 2a2,_.,2- 8) I ~2, 
ql4 = (4- a2,_.,2- ~2) I a~. 

If we substitute the values of q14, q1s, q4s in the 
equation PI= J.L 2 = (q1 + qs -q,t)2, we get a relation 
connecting a and (3: 

(2 +a)~ = 4- a2~t2 • 

It is now easy to find the dependence of W2 

= (Pt + P2 )2 and Q2 = (Pi + Pa )2 on a: 

vJ12 = a-1 (2 +a~t2) [8 +2a- (a~t) 2 ], 

Q2= (8 + 2a- a2p.2)2/(4-a2ft2), (9) 

where a varies from 0 to 2/J.L, which follows from 
the fact that a and (3 are positive. The dependence 
of Q2 on w2 is shown in Fig. 3 (curve 1). If J.L = 1, 
the middle point Q2 = w2 = 27 is obtained for a = 1. 
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FIG. 4 

Let us now study the singularities of the diagram 
shown in Fig. 4. It is invariant with respect to only 
one transformation: 

from which we have as= as= a, a7 = as= (3, 
a 2 = a 4 = 1. If we set a 3 = y(3, then after some 
slight manipulation we can rewrite (3) as 

yqs = qs - q7, yql = It (qs - q6). 
(10) 

The further solution of the system of equations is 
analogous to the previous case, and therefore we 
shall not present it. The answer is: 

W2 = (3 +tt)2 +(4 +4t-t +4tty +ttY2)(f-1), 
Q2 = ( ~ + r) ( 4 + 4't + 2~tr -~tr2 )2. (11) 

\2-r 1+~t+wr 

From the condition that a is positive we find that 
y must vary over the range from 0 to 2. For 
J.L = 1 Eq. (11) coincides with Eq. (9). The relation 
between W2 and Q2 is shown in Fig. 3 (curve 2). 

Let us now go on to the diagram of Fig. 5, which 
admits two symmetry transformations: 

ql <-> - q~> q4 <--> -q2. qa <--> -qa. q4 <--> -q6; 
q2 <-+ -qa, q4 <--> -q4, q2 <--> -q2. qs <--> q6. 

From these we have a 1 = a 3 = a, a 2 = a 4 = (3, 
as= as= 1. The relations (3) now reduce to a 
single equation: 

(12) 

If we multiply this equation by the various qi, then 
by using the symmetry conditions we can find all 
the qik from the relations so obtained. Substitut
ing the qik in W2 and Q2, we have 

W2 ~ 2 (1 +l/a)2 (1 + a2f12- ~2), 

Q2 = 2 (I + 1/~)2 (I _ a2t-t2 + ~2). (13) 

The equation that connects a and (3 is a cubic: 

2a~ + a2p.2 + ~2 = I + ~(~2 _ a2fL2_ I)+ a (a2t-t2- ~2-1). 

If we divide this equation by ( 1 + (3 )3 and write 

x = at-t/(1 +~). y = (1- ~)/(1 + ~) 
we get the simpler equation 

ILY2 = (1 +!LX- x2) X. 

Taking into account the fact that a is positive, 
we find that x and y can vary only over the ranges 
x ~ 0 and I y I ~ 1. The plot of the relation between 
Q2 and w2 is shown in Fig. 6. 

/ 

FIG. 6 
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FIG. 7 

Let us consider the diagram of Fig. 7. It has 
one symmetry transformation: 

and consequently a 5 = a6 = 1, a2 = a4 = {3. 
The equations (3) are as follows: 

~q4 + rx1q1 = qs. ~q4 + rxsqs = -q5. 

Solving this system of equations by the method pre
sented above, we find that a 1, a 3, and {3 are con
nected by the relations 

a;f.L2 (1 + ~) + a1 [(1 + ~)2 -ail = (1 + ~) (1- ~)2 , 
a; (1 + ~) + 0(3 [(1 + ~) 2 - a;f.12} = (1 + ~) (1- ~) 2 • 

These equations become much simpler if we re
place a 1, a 3, and {3 by variables x, y, z defined 
by 

y = (1 - W(l + ~). 
Z = rx 3/(1 + ~). 

We have 

f1X2 + x (1- z2) = f1y2, z2 +z (1-x2) = y 2 • 

From this we easily find that 

z = 1 + !-IX X 2 = (f,l + 2x- x3) (1 + fLX) X 

1-1 + x ' Y (!-1 + x)2 

The condition that a be positive requires that 
x:::: 0, z :::: 0, -1 ~ y ~ 1. We can now find the 
relation between Q2 and w2: 

2 ( , 2x )2 , 2y { 2x ' ( 2z ) u7 = f-L-;-1+y ~-xzy+ t+u) 1 + 1+u 

( 2z )2 
+,1+1+y' Q2 = 16 1 + y• - x• - z• 

(1-y•)• • 
(14) 

The curve (14) is of the same nature as the curve 
(13), of course with different values of the asymp
totes. 

We note a distinguishing feature of these dia
grams: they have for the asymptotes not only lines 
on which W2 or Q2 is equal to the sum of masses 
of intermediate particles, but also other lines. 

Let us now consider diagrams for which singu
larities exist only under definite conditions, for 
example a square in which the masses of all the 
particles are equal to 1, except that there is one 
external particle with the mass JJ. (Fig. 8). This 
diagram has no symmetry transformations. If we 
set W2 = 2 + 2F and Q2 = 2 + 2<I>, then F and <I> 
are connected by the relation 

PJ 
-~-~-----------r-.-

'lz 

Pz 

FIG. 8 

4F (<D2 - 1) = (3- f.L2) (<D + 1) 

± 4 V(<D + 1)(<D- 0.5) (<D- <Dt) (<D- <Dz), 

411>1 = f.L 2 - 2 + V3f.L2 (4- f.L2), 

4<D2 = f.L2 - 2- V3f.L2 (4- 1-L•). 

For what values of JJ. does the diagram have a 
singular point? From the condition that the Feyn
man parameters a be positive it follows that for 
JJ. 2 > 4 there is no singular point, and for JJ. 2 < 4 
there is one. In Fig. 9 curve 1 shows the relation 

FIG. 9 

between Q2 and W2 for JJ.2 ~ 3, and curve 2 for 
3 < JJ.2 < 4. 

FIG. 10 

Let us now consider the same square, but with 
a diagonal (Fig. 10). Before seeking the equations 
for W2 and Q2, let us find the equations that con
nect the ai. We have 

ot~ + a!+ (2- f.L2 ) a 1a 4 = I, 

a~+ a;+ a 2a 3 = 1, a1 + a 2 = a 3 +a,. (15) 

It follows from the equations (15) that (4 -JJ.2 ) a 1a4 

= 3a2a 3, but since a > 0, we must have JJ. 2 < 4, 
which is indeed the condition for the existence of 
a singular point. The expressions for w2 and Q2 

in terms of the ai are: 

W2 = 1 +(1 +al+a,)(1 +a.+(J(s)(l +as-az)a11ot3\ 
Q2 = 1 + (1 + a1 + a 4) (1 + a 2 + aa) (1- (J(s + !Xz) a;-1 a4\ 

The curve for this relation is shown in Fig. 11. 
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FIG. 11 

The next diagram differs from that just con
sidered in having the diagonal through different 
vertices (Fig. 12). We again investigate the con-

P, 

liz 

Pz 

FIG. 12 

ditions under which there is a solution with posi
tive a. The system of equations for the O!i is 
more complicated: 

a~ + a~ + a1a2 = 1, a~ + a!+ a 3a4 = I, 

(1 +a1 + a2) (1 + a3 + a4) (a1- a2 + a4- a3) 

= (f.l2 - 1) a 1a 4 • (16) 

It is convenient to go over to new variables x 
andy: a2 = a1x - 1, a 3 = a4y - I. 

Then instead of Eqs. (16) we get equations for 
x and y: 

2 +2x-x2 _L 0.2 + 2y-y' _ !J.2 -1 
1 + x + x2 ' 1 + y + y2 - (1 + x) (1 + y) ' 

a = 1 +2x a = x• - 1 
1 1+x+x2 ' 2 1+x+x2 ' 

y•-1 - 1+2y () 
a 8 = 1 + y + y• , a 4 - 1 + y + y' 17 

The condition for the O!i to be positive requires 
that x, y ~ 1. With such x and y a solution of 
(17) exists only under the condition that J-1. 2 ::s 9. 
Consequently, this diagram (Fig. 12) can have a 
singular point for J-1. 2 ::s 9. The dependence of Q2 

on W2 is of the form shown by curve 1 in Fig. 9 
for J..L 2 < 7, and by curve 2 for J..L 2 > 7. 
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