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General conditions for the stability of the electron distribution function for a plasma with 
respect to high-frequency plasma oscillations are deduced neglecting collisions. Free 
plasma and plasma immersed in a constant, uniform electric or magnetic field are con
sidered. 

1. It is known that the mean free path of particles 
in a plasma and the equilibration time increase 
with rising temperature. Consequently, in investi
gating a high -temperature plasma (as well as a 
very rarefied one) one has to deal with particle 
distribution functions that may differ appreciably 
from the equilibrium functions. Under these cir
cumstances the question arises as to the stability 
of such distributions with respect to small oscilla
tions in the field and charge density within the 
plasma. The present paper is concerned with an 
analysis of the stability of the electron distribu
tion function with respect to plasma oscillations. 

The nature of the field oscillations created 
when a plasma is disturbed depends, of course, 
on the unperturbed electron distribution function. 
For example, as Landau has shown, 1 in the case 
of a Maxwell distribution the field oscillations 
will be damped. But if a delta-function like term 
corresponding to the passage of an electron beam 
through the plasma is added to the Maxwell dis
tribution, then the field oscillations and the per
turbation in the original distribution function in
crease in time for any velocity of the beam, i.e., 
the plasma plus beam system is unstable ( Akhiezer 
and Falnberg2 ). 

More general statements are also true, namely, 
that any distribution function, which is an arbi
trary even function of the velocity with a single 
maximum at zero is stable, while the super-posi
tion of an arbitrary even function and a delta-like 
term is unstable. 3·' 

2. To establish the general conditions for the 
stability of the electron distribution function one 
need only study the behavior of the individual spa
tial Fourier components of both the potential cp 
and the perturbation f in the original electron 
distribution function F0(v) (v being the electron 
velocity). The behavior of these functions as 
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t - oo ( t being the time ) is determined by the 
singular points of their Laplace transforms cpp 
and fp (here p = iw and w is the complex fre
quency). 

First we shall consider a free plasma, i.e., 
one not under the influence of external fields. In 
this case 'Pp and fp are related by1 

fP (u) = (p + iku)-1 {g (u) + ikem- 1rpPf~ (u)}, (1) 

where u is the electron velocity parallel to the 
wave vector k, f0 ( u) is the initial distribution 
function for u, i.e., f0(u) = jF0(v)dv1 (vl be
ing the electron velocity perpendicular to k), and 
g is the initial value for f ( u, t). 

The poles of 'Pp are the roots of the equation1 

iro~ \ f~ (u) du = 1 
k ) p + iku ' 

(2) 
c 

where w0 is the plasma frequency and the integra
tion is along a line parallel to the real axis and 
below all the singularities of the integrand. 

If all the roots of this equation (with respect 
to p ) lie in the left half -plane, then cp ( t) will 
tend to zero as t - oo • On the other hand, the 
distribution function will undergo undamped fluc
tuations of constant amplitude with a frequency 
ku, which depend on the electron velocity (this 
behavior of the distribution function is due to the 
fact that fp( u) has a purely imaginary pole p 
= - iku [see Eq. (1)]. On the other hand, if at 
least one of the roots of Eq. (2) lies in the right 
half-plane, then cp ( t) and f ( u, t) will increase 
indefinitely with time and the initial distribution 
f0( u) will be unstable. 

Thus, the necessary and sufficient condition 
for the stability of the distribution function F0(v) 
consists in there being no roots to the equation 

G(s) = "( f~(u)du k• ip (3) 
.)u-s 2• S=k 

-<lO roo 
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in the upper half-plane s for arbitrary k (k > 0 ). 
If no such roots exist, then the function w = G ( s ) , 
which we shall assume to be finite, maps the upper 
half plane of s into an area D which does not in
tersect the positive half-axis of w. This area is 
bounded by some curve K traced by the point w 
as s moves along the real axis. Thus this curve 
is situated in a finite part of the w plane and, be
cause of the principle of maximum modulus, en
closes an area D. Therefore, the curve K does 
not intersect the positive half-axis. 

In the case where Eq. (3) does have roots in 
the upper half plane, then the area D and with it 
the curve K intersect the positive half-axis. 

This intersection means that for some real 
value of s the value of 

00 ' 

~ f 0(u)du , 
w = -- + 1t ifo(s) u-s 

-oo 

is positive, i.e., 

f~ (s) = 0, 
-oo 

(4) 

The first of these conditions is fulfilled at the 
extrema of f0(u), i.e., at s = u1, u2, ••• , Un· There
fore, for the distribution function to be unstable it 
is necessary and sufficient that at least one of the 
following inequalities be satisfied* 

r f~(u) du 0 
l u-u. > ' 

-oo I 

j = 1, 2, •.. , n. (5) 

It is easy to see that this instability criterion 
need be verified only for the minimum points of 
f0(u). Actually, when s moves along the real axis 
from - oo to + oo, the upper half-plane of s re
mains on the left. Therefore, when w moves along 
curve K, the area D also remains on the left. This 
means that w either does not intersect the positive 
semi-axis at all, or intersects it at least once while 
passing from the lower to the upper half plane. The 
derivative f0( s) passes from negative to positive 
values at the same time, which is possible only in 
the vicinity of the minimum for f0( u). 

Therefore, the stability criterion for f0( u) has 
the form 

one of which is fairly pronounced, it will be unstable. 
(This is the case when an electron beam with a 
small velocity dispersion passes through a plasma. ) 

To prove this we separate the distribution func
tion into two terms, f0(u) = f1(u) + f2(u), with f1(u) 
coinciding with f0( u) outside the interval ( u2, u2) 
and equal to f0( u2 ) inside this interval [ u2 is the 
minimum of f0( u) lying between the maxima u1 

and u3 and u2 is the point nearest u2 at which 
f0(u2) = f0(u2 )]. It is evident that the contribution 
of f2(u) to the integral in (5) will be positive and 
rather large provided that u2 is close to u2• In 
fact, integration by parts yields 

00 ' 

~ {2 (u) du v 
--->' ' u - u. (u - u.)2 

-oo - 2 -

. 
u, 

v = ~ f2 (u) du > 0. 
u, 

Therefore, the integral given by (5) will be posi
tive at the minimum point u = u2 if u2 - u2 is suf
ficiently small. Consequently, f0(u) is unstable. 

4. We now demonstrate that an arbitrary, 
spherically symmetrical distribution function 
F0( I vI), which never becomes zero is stable.* 

Noting that 
00 

fo (u) = ~ F 0 (v) dv _L = 2'1t ~ F0 (V u 2 + v• _L) v _L dv j_ , 

0 

we have 

f~ (u) = - 27t uF 0 (jui) • 

Therefore, Eq. (3) assumes the form 

and hence 
00 

2n ~ 
-oo 

00 

2 ~ uF 0 (I u I) d _ k" n u--s- u w2 • 
-oo 0 

uF0 (Iul) d _ 2 1 . F (I I)_!!._ s - u u n ts o s - w2 • 
0 

(7) 

(8) 

The imaginary part of this expression becomes 
zero when s = 0. Therefore, the stability condition 
requires that 

00 

-· ~ F0 (f u f) du < 0, 
-oo 

which is always satisfied. 
5. We now estimate the growth rate of the oscil-r f~(u) du ' lations, i.e., the magnitude of Imw for the unstable 

~ --< 0, fo (ui) = 0, f~(u1) > 0. (6) 
-oo u- uf distribution function, assuming that this quantity is 

3. It follows directly from Eq. (S) that a distribu· sufficiently small. In this connection it is obvious 
tion function with only one maximum is stable.t that the curv~ K intersects th_e real.half-~s o; 2 

If the distribution function f0( u) has two maxima, the plane w = G ( s) at two nelghbormg pomts ko lwo 

*This criterion has been established independently by 
Noerdlinger,S Penrose," and ourselves. 

tThis stability condition was obtained by Auer. 7 

*Here the distribution function can have an arbitrary num
ber of maxima and minima. The stability of a spherically sym
metrical distribution function with a single maximum has been 
demonstrated by Penrose. 6 
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and kj I w~ and that G ( s ) can be expanded in a 
Taylor series in the vicinity of s = s0 [where 
G(s0 ) = k5/w~ and f6(s 0 ) = 0]. Thus we obtain, 
correct to quadratic terms, 

2 2G'(s0) 2 (II"- k~) 
(s- s0) + ~ (s- s0)- 2G"( ) = 0, 

o w0 s0 

and consequently the maximum value of Im w 
= kIm s is 

maxIm w 

_ f_ G'(s0) ([G'(s0)1 2 ...L 2(k2 -k~) )'1•} 
-- max k Im \ G"(s) ± G"(s) , 2 " • 

k.<;k<;k, o , o ~ w0G (s0) 

(9) 

In deriving the instability criterion for the dis
tribution function we have disregarded collisions 
among particles. Obviously these collisions hinder 
the development of the instability. Hence, the e
folding frequency of the oscillations, Im w, must 
exceed a minimum value equal to the effective col
lision frequency in order for the instability actually 
to occur. 

6. One can raise the question as to a general 
form for all the stable f0( u) distribution func
tions. Taken together, these functions allow the 
following representation. If g ( ~ ) is the Fourier 
component of f(,(u), i.e., 

00 

f~ (u) = ~ g (~) ei~u d~, 
-oo 

and if the distribution function is stable, then 
g ( ~ ) can be represented in the form 

~ 

g (E) = - ~ 'IJ (~ _____:. n 'IJ (!;')dE' , (10) 
0 

where 
00 

<\1 (E) = ~ e-i~l. dcr (/.) 
-00 

and CT (A.) is an arbitrary, continuous, non -decreas
ing, bounded function.* For every such function 
there corresponds a definite stable distribution 
function. 

7. We now proceed to examine the conditions 
for the stability of the distribution function for 
electrons in a plasma immersed in constant, uni
form magnetic field H. Here we confine our in
vestigation to plasma waves for which the electric 
field is longitudinal. The dispersion equation for 
these waves has the form 8 

s11 sin26 -r s33 cos26 + 2s13 cos6 sin6 = 0 , (11) 

*The representation given by (10) was found by B. Ya. 
Levin (see reference 3). 

where Eik(w,k) is the dielectric permittivity ten
sor for a plasma in a magnetic field and (} is the 
angle between k and H. These quantities are com
plicated functionals of the distribution function 
F 0(v) (see Kitsenko and Stepanov9 ). 

We assume that the plasma waves are long 
enough and the magnetic field H is strong enough for 
the inequality kV 1 I w H « 1 to hold, here v 1 is the 
mean value of the electron velocity perpendicular 
to H and WH = eHimc is the electron gyrofre
quency. In this case (11) assumes the form 

w~cos2 e r /~ (u)du w~ sin2 e 
1---.) --+--X _ 00 xu-w 2wH 

1 )f0 (u)du=0, 
XU-W-WH 

(12) 

where f0( u) is the distribution of electron velocities 
parallel to H and x = I k cos (} I is the component 
of k parallel to H. 

Integrating Eq. (12) by parts one obtains 
00 

GH (s) == \ ( cos• e + sin• e In u - s + SH ) r (u) du = K' 
.) u- s 2sH u - s- SH 0 w2 

-00 0 

(13) 
where 

SH = IWH 1/:x.. 
The necessary and sufficient condition for the 

stability of the f0(u) distribution function is that 
the roots of Eq. (13) do not lie in the upper half
plane. Otherwise, as was shown in Sec. 2, the 
function w = G ( s ) maps the real axis of s into 
a curve K that intersects the positive half-axis 
(here the passage along curve K from the lower to 
the upper half-plane corresponds to an increase in 
s ). 

If s is real, then the real and imaginary parts 
of GH (s) are 

00 

~ f~ (u) du 
Re GH (s) = cos2 0 u-s 

-oo 

sin• e 00~ I u _ s + s I + 2S /0' (u) In H. du, H u -s-sH 
-co 

•+•H 
• sin2 e \ ' ImGH(s) =ncos2 6f0 (s) +n 2sH ~ f0 (u)du. 

s-sH 

The distribution function will be ~table if the 
real part of GH ( s ) is negative for all the values of 
s for which Im GH( s) = 0, i.e., 

~~ (UJ) COS2 0 + (2SH rl lfo (UJ + SH)- fo {Uj- SH )] sin2 0 = 0, 

00 • 00 

cos20 C fo(u)du+sin•e \ f'(u)!nlu-s+sHldu<O. 
3 u-u1 2sH ) o u-s-sH 

-oo -oo 
(14) 
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We note that when this criterion is used, as was 
explained in Sec. 2, one need take into account only 
the roots of Eq. (14) for which 

• •+•n 
\ n sin2 e \ 
~ Im Gn (s) ds = --zs;;- ~ fo (u) du 
"I s-sn 

+ l't cos2 e lfo (s) - fo (u,)l 

has a minimum. 
When (}- 0 and SH- 0 or SH- 0, the insta

bility condition (14) coincides with the instability 
condition in the absence of a magnetic field. There
fore, generally speaking, a magnetic field restricts 
the class of stable functions. 

8. We now show that an even distribution func
tion f0 ( u) with a single maximum (at u = 0 ) is 
stable. In this case Eq. (14) has a single root 
u1 = 0. Actually, for u1 > 0 the inequality 

f~ (ul) < 0, I U1 + sn I > I U1 - sn 1. 

is satisfied so that f0(u1 + sH) < f0(u1 -sH), and 
Eq. (14) can have no solution for u1 > 0. Because 
f0( u) is even, this statement holds true even when 
u1 < 0. The stability condition now assumes the 
form 

cos2 e r ,;~u) du + s;:He r ~~ (u) In I:~ :: I du < 0. 
-00 -00 

Obviously this inequality is satisfied, since the 
integrands are negative for arbitrary u. 

9. In conclusion we derive the stability condi
tion for a plasma located in a constant, uniform 
electric field E0• Just as in the case of the mag
netic field, we confine ourselves to longitudinal 
plasma oscillations and assume further that E0 
is sufficiently weak. 

Beginning with the equations 

iJF d ~e. iJF + at + v gra F + iii (E0 + E) av J {£} = 0, (15) 

divE= 4nen0 (~Fdv- 1), (16) 

where n0 is the ion density, J { E } the collision 
integral, and E the electric field due to plasma 
oscillations, one can derive10 the following disper
sion equation for high-frequency plasma oscilla
tions for a sufficiently weak field E0 

00 ' 00 

C f 0 (u) du + ieE0 cos S \ -.!!:!:!_ .!!:._ [ f~ (u)J. = .!!!__ , (17) J u- s mk ~ u- s du u _ s co a 
00 -00 0 

where f0( u) is the initial electron distribution func
tion and (} is the angle between k and E0• In de
riving this equation we have neglected the collision 
integral, which, however, is implicitly contained in 
10, whose form depends on J {f0}. 

Integrating the second term in Eq. (17) by parts, 
separating the real and imaginary terms and mak
ing use of the method explained in Sec. 2, we obtain 
the following condition for the stability of the dis
tribution function f0( u) 

00 ' 

~ f0 (u)du _:r.e£0 Sf"'( )<O 
4 k cos 0 Ill. • u-u1 m 

(18) 
-oo 

where Uj are the roots of the equation 
00 '" 

f, ( ) eE0 S ~ f o (u) _ O· 
0 u1 +-2 k cos --du- , e<O. :r.m u-u1 

_oo 
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