THE MOMENTUM DISTRIBUTION OF PARTICLES IN A DILUTE FERMI GAS

V.A.BELYAKOV

Moscow Engineering Physics Institute

Submitted to JETP editor November 26, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) **40,** 1210-1212 (April, 1961)

The first two terms of the expansion in powers of the gas parameter of the momentum distribution of particles in a non-ideal Fermi gas are obtained, using a perturbation method.

 $\rm A$ number of authors^{1–4} have calculated the energy spectrum and the ground state energy of a dilute Fermi gas to second order in $an^{1/3}$, where n is the number of particles in unit volume, and a is the S-wave scattering amplitude. (The condition an^{$1/3$} ~ $a/\lambda \ll 1$, where λ is the de Broglie wavelength, allows one to include S scattering only.)

The momentum distribution function of particles is also of interest. It can be determined from the mean value of the operator giving the number of particles

$$
n(\rho) = \langle \psi^* | a_{\mathbf{p}s}^* a_{\mathbf{p}s} | \psi \rangle, \tag{1}
$$

where ψ is the wave function of the system of interacting particles, while a_{DS}^+ and a_{DS}^- are the creation and annihilation operators of particles with momentum **p** and spin s.

We calculate $n(p)$ to the second order of perturbation theory in the small parameter an^{$1/3$}. We write the particle interaction Hamiltonian in the form

$$
V = U \, \Sigma a_{p_4}^{\dagger} a_{p_4}^{\dagger} a_{p_4}^{\dagger} a_{p_4}^{\dagger} a_{p_2}^{\dagger} a_{p_1}^{\dagger} a_{p_1}^{\dagger} a_{p_2}^{\dagger}. \tag{2}
$$

(The summation is made with account of momentum conservation). The constant U is related to the scattering amplitude by

$$
U = 4\pi a\hbar^2/m. \tag{3}
$$

We write down ψ from perturbation theory, up to second order terms:⁵

$$
\psi = \psi_0 + \sum_i \frac{V_{i0}}{E_0 - E_i} \psi_i + \sum_i \sum_k \frac{V_{ik}V_{k0}}{(E_0 - E_k)(E_0 - E_i)} \psi_i
$$

-
$$
\sum_i \frac{V_{00}V_{i0}}{(E_0 - E_i)^2} \psi_i - \frac{1}{2} \psi_0 \sum_i \frac{|V_{i0}|^2}{(E_0 - E_i)^2},
$$
 (4)

where ψ_0 , and ψ_i are, respectively, the wave functions for the ground and excited states of an ideal gas.

The substitution of (4) into (1) gives for $n(p)$

$$
n (p) = 1 - \frac{4U^2m^2}{(2\pi\hbar)^6} \int_{p_1 < p_2} dp_1 \int_{p_2 > p_0} dp_2
$$

\n
$$
\times \int_{p_3 > p_0} dp_3 \frac{\delta (p_1 + p - p_2 - p_3)}{(p_1^2 + p^2 - p_2^2 - p_2^2)^2}, \quad |p| < p_0;
$$

\n
$$
n (p) = \frac{4U^2m^2}{(2\pi\hbar)^6} \int_{p_1 < p_0} dp_1 \int_{p_2 < p_0} dp_2
$$

\n
$$
\times \int_{p_4 > p_0} dp_3 \frac{\delta (p_1 + p_2 - p - p_3)}{(p_1^2 + p_2^2 - p^2 - p_3^2)^2}, \quad |p| > p_0,
$$

where p_0 is the limiting Fermi momentum.

We consider the case $p < p_0$. Integration with respect to \mathbf{p}_3 and the substitution $\mathbf{s} = \mathbf{p}_1 + \mathbf{p} = \mathbf{p}_2$ $+ p_3$, $q = p_2 - p_3$ gives

$$
1 - \frac{2U^2m^2}{(2\pi\hbar)^6} \int ds \int dq \; [(s-2p)^2 - q^2]^{-2},
$$

where the integration range with respect to s is given by the conditions $|\mathbf{s} - \mathbf{p}| < p_0$, $\mathbf{s} < 2p_0$, and the integration range for **q** by the conditions $|s - q| > 2p_0$, $|s + q| > 2p_0$. Since the final result depends only on p, we can average our expression over the directions **p.** This greatly simplifies the further integration over s and q.

Finally, for $p < p_0$ we obtain

$$
n (p) = 1 - \frac{1}{3x} \left(\frac{3na^3}{\pi}\right)^{2/3} \left[(7 \ln 2 - 8) x^3 + (10 - 3 \ln 2) x + 2 \ln \frac{1+x}{1-x} - 2(2 - x^2)^{2/3} \ln \frac{(2 - x^2)^{2/3} + x}{(2 - x^2)^{2/3} - x} \right], \qquad x < 1,
$$

where $x = p/p_0$, $n = \frac{\pi p_0^3}{3} (\pi \hbar)^3$.

Similar calculations for $p > p_0$ lead to the expressions*

$$
\frac{1}{6x} \left(\frac{3na^3}{\pi}\right)^{1/4} \left[(7x^3 - 3x - 6) \ln \frac{x-1}{x+1} + (7x^3 - 3x + 2) \ln 2 \right]
$$

\n
$$
-10x^3 + 30x^2 - 24 + 2(2 - x^2)^{3/2} \left(\ln \frac{(2 - x^2)^{1/2} + 2 + x}{(2 - x^2)^{1/2} - 2 - x} \right)
$$

\n
$$
+ \ln \frac{1 + (2 - x^2)^{1/2}}{1 - (2 - x^2)^{1/2}} - 2 \ln \frac{x + (2 - x^2)^{1/2}}{x - (2 - x^2)^{1/2}} \right], \ 1 < x < \sqrt{2};
$$

$$
*arctg = tan^{-1}
$$

850

THE MOMENTUM DISTRIBUTION OF PARTICLES IN A DILUTE FERMI GAS 851

$$
\frac{1}{6x} \left(\frac{3na^3}{\pi}\right)^{2s} \left[(7x^3 - 3x - 6) \ln \frac{x-1}{x+1} - (7x^3 - 3x + 2) \ln 2 \right]
$$

-10x³ + 30x² - 24 - 4 (2 - x²)^{2s} (arctg $\frac{2+x}{(x^2 - 2)^{3/2}}$
+ arctg $\frac{1}{(x^2 - 2)^{3/2}}$ - 2 arctg $\frac{x}{(x^2 - 2)^{3/2}}$) , $1^{\prime}2 < x < \sqrt{3}$;
 $\frac{2}{3x} \left(\frac{3na^3}{\pi}\right)^{2s} \left[2 \ln \frac{x+1}{x-1} - 2x + (x^2 - 2)^{3/2} \left(2 \arctg \frac{x}{(x^2 - 2)^{3/2}} \right) \right]$

$$
3x \leftarrow \pi / \left[x - 1 \right] \left(x - 2 \right)
$$

-
$$
- \arctg \frac{x - 2}{(x^2 - 2)^{3/2}} - \arctg \frac{x + 2}{(x^2 - 2)^{3/2}} \Big] , \quad x > 3.
$$

We quote the values of the function $n(p)$ at several points:

$$
n(0) = 1 - 2 (3na^3/\pi)^{i/2} \left(1 - \frac{1}{2} \ln 2\right),
$$

\n
$$
n(p_0 - 0) = 1 - 2 (3na^3/\pi)^{i/2} \left(\frac{1}{3} + \ln 2\right),
$$

\n
$$
n(p_0 + 0) = 2 (3na^3/\pi)^{i/2} \left(\ln 2 - \frac{1}{3}\right),
$$

\n
$$
n(p) = (4/9x^4) (3na^3/\pi)^{i/2} \text{ as } p \to \infty.
$$

In agreement with Migdal, 6 we find that the distribution function undergoes a discontinuity at p

 $= p_0$. The size of the jump at this discontinuity

$$
n (p_0 - 0) - n (p_0 + 0) = 1 - 4 (3na^3/\pi)^{2/3} \ln 2
$$

agrees with calculations made by Galitskii⁴ by another method.

In conclusion, the author expresses his sincere gratitude to A. A. Abrikosov for suggesting the problem and for interest in the work.

- ¹A. A. Abrikosov and I. M. Khalatnikov, JETP **33,** 1154 (1957), Soviet Phys. JETP **6,** 888 (1958).
- 2 K. Huang and C. N. Jang, Phys. Rev. **105,** 767 (1957).
- 3 T. D. Lee and C. N. Yang, Phys. Rev. **105,** 1119 (1957).

4 V. M. Galitskii, JETP **34,** 151 (1958), Soviet Phys. JETP **7,** 104 (1958) .

⁵ L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, 1958.

6 A. B. Migdal, JETP **32,** 399 (1957), Soviet Phys. JETP **5,** 333 (1957).

Translated by K. F. Hulme 203