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An electromagnetic-wave theory in which spatial dispersion is taken into account is applied 
to the case of exciton states. Propagation of waves in an infinite crystal and their transmis­
sion through a plane-parallel plate are considered. The absorption of electromagnetic waves 
in the presence of spatial dispersion is investigated. 

IN a previous work1 the equations of the electro- The analysis in this paper is based on the 
magnetic field in a non-conducting medium in the integral-differential equation (1), which automat-
presence of spatial dispersion were obtained: ically takes into account the additional conditions 

ME:t.{r) + r&i· (r) + 4nr \' K:i·u' (r, r') iS? (r') dr' = 0, (1) and requires only the choice of the exciton wave 
J functions (Pekar's functions were used for this 

<W~·(r) = -4n~K11·u•(r, r') le~·(r') dr', (2) 

where ;el( r), iS II ( r) are the solenoidal and irro­
tational parts of the electric field intensity, y 

= J.LW 2/c2, and summation over repeated indices 
is understood. The polarizability kernel is 

Kx•u• (r, r') = Kf-u· (r, r') + K~·u· (r, r') 

1 ~ [ (OJGx.(r)jn)(nJGy.(r')JO) 
-- (£ -£) -!iw 1 n ° E-E0 -1iw-ie(w) n n n 

_ (n I ax' (r) I 0) (0 I G u' (r') In) J (3 ) 
En-Eo+nw+ien(-w) ' 

div ,K? (r, r') = 0, curl, K11
• (r, r') = 0. (4) 

Here E0 is the energy of the ground state, En is 
the energy of the excited state; En is connected 
with the lifetime of the state in the usual fashion, 
and G ( r) is the operator of the electric moment 
per unit volume. 

In the present work, we shall apply these re­
sults to the case of exciton states of the crystal. 
This case was considered by Pekar, 2•3 who started 
from the differential equation derived by him 
for the polarization and with additional boundary 
conditions which require the vanishing of the 
exciton part of the polarization on the surface of 
the crystal. However, these conditions, even if 
one uses the wave functions of the exciton states 
chosen by Pekar, are approximate in the first 
place, and in the second place, are applicable only 
in the case of an isolated exciton band, transition 
to which is permitted in the dipole approximation. 

purpose). This makes it possible to obtain gen­
eral results which include' Pekar's results as a 
special case and which show where the approxima­
tion in the latter lies. 

1. WAVES IN AN INFINITE CRYSTAL 

The Hamiltonian of the infinite crystal com­
mutes with the translation operators Tn (n is 
the lattice vector). Therefore, one can use the 
eigenfunctions of T n in the calculation of matrix 
elements entering into (3); the corresponding 
eigenvalues are eik·n, where k is the quasi­
momentum of the exciton (- rr :::;; k · ai < rr), and 
ai ( i = 1, 2, 3) is the basic lattice vector. It fol­
lows from translational symmetry that the quan­
tity 

f (r, k, o:) = exp (-ikr) (0 l G (r) I ka), 

(a are the other variables that enumerate the 
states along with k) has the same period as the 
lattice, and can be expanded in the vectors of the 
reciprocal lattice b: 

f (r, k, o:) = ~ g (b, k, o:) ei2nbr. 

b 

Transforming to the variables k, a in (3), we 
obtain 
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K2u· (r, r') = (ZJt~"nw ~ ~ r± (k, a) 
~ 

x l]g~'y'(b, b', k, k, a) exp [=f ik (r- r') 
bb' 

=f i2:n: (br - b' r') I dk; 

f± (k, a) = =f . E (k, a)- E0 + 
E (k, a) ~ 1e (k, a, +w) -Eo- liw 

g)y,(b, b', k, k', a)= g;,(b, k, a) gy' (b', k', a), g- = g+*,. 
(6) 

L - oo are the dimensions of the fundamental 
region. 

We shall assume that the macroscopic field 
tg,l( r) entering in (1) is a smooth function of its 
coordinates. Then, in the integration over r', the 
main contribution is made to the part due to K+ 
by the terms with b' = 0 and with small k, since 
K+ does not contain any singularities. When k 
is small, the matrix element ( 0 I G ( r) I k · a) is 
a smooth function of the coordinates: when k = 0, 
it has the same period as the lattice, as a conse­
quence of which, being a macroscopic quantity, it 
is constant. Therefore, g (b, k, Cl!) is small for 
b ¢ 0 and small k. The circumstances mentioned 
lead to the result that the part of the polarization 
which is due to K+ is locally associated with the 
field. 

Following Pekar,2 we limit ourselves to con­
sideration of states for which k and only k is a 
continuous quantum number. In this case a is 
discrete and one can separate components in K­
for which E ( 0, a) differs appreciably from E ( w) 
= E 0 + tiw. Like K+, they yield the local part of 
the polarization. Taking it into account that f*( z*) 
is the analytic continuation in the complex plane of 
the function f* ( z ) , and that the functions k enter­
ing into (6) may not be analytic at the point k = 0, 
we can write (1) in the form 

6.<Sf, (r) + r~?y·<Sf.(r) + 4nr~xty•(r, r')8'p(r') dr' = 0, 
(7) 

r.~ , ~ 4nL" ['V r+ ( . a \ pi?y' = Vx'y' + h(;} ~ -at af, a) 
~ 

X g);? ( 0, 0, (- ai :r )* 

_l_ '',' r- (- ai _!l___ a) ' ~ ar, 
" 

. a ) --at- a ar, 

X g;;;? ( 0, 0, - ai :r , (- ai :r )*,a) Ja=+o· (8) 

The prime on the summation sign in (8) means 
that the components containing the singularity 
are omitted; xl is obtained from K-, which ap-

pears in (6), by replacement of g- by g-1 and 
I) by I)" = I) - I)'; gity' is obtained from gi'y' 
Q! Q! Q! Q! 

by replacing gx' by the projection ~' of this 
quantity, on the plane perpendicular to k + 21rb. 

We seek a solution of (7) in the form 

<Sn (r) = 2] Cs exp (in Xsr), nz =I, 

llCs = 0 

(9) 

(10) 

subject to a condition that guarantees the smooth­
ness of the field 

[xs[~n!d (11) 

( d is the lattice constant), which should be satis­
fied for those s for which cs is large. Computing 
the integral over k in (7) by a method similar to 
that used in the Appendix, we find that Ks and cs 
are determined from 

4rrrL" 'V" .1 + JU;) ~ f;;- (X, a) g;;-x'y' (0, 0, X, x*, a) Cy• = 0 (12) 
" 

and (10), where the subscripts of g and r indicate 
the direction of k, and f3-1ix.'y' is obtained from (8) 
by setting a= 0 and writing r and g with the 
index n. From (12) one can obtain (in the corre­
sponding case and approximation) the results of 
Pekar, 2 which refer to a transverse field in an in­
finite crystal. tgll ( r) can be found with the help 
of (2) and (9). 

2. WAVES IN A THICK PLATE 

We consider the normal incidence of a wave 
on a plane-parallel plate of a cubic crystal. As 
wave functions of the exciton state, we choose the 
functions 2 

where >¥ ak is the wave function of the infinite 
crystal, 

-ka3 = ka3 = ks = nvf(N + 1), 

v = 1, .. . ,N, 

a 1 2 are parallel to the surfaces of the plate, N is 
th~ number of elementary cells that make up the 
thickness of the plate Z. 

We direct the z axis normal to the plate so that 
z = 0 and l on the surfaces. Now the polarizability 
kernel is obtained in the form (5), where 
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K-:-u' (r, r') 

+ kx (x- x') + ky (y - y') 

+ (k1h1z + k2h2z) (z- z') + 2n (br-b'r')l} 

X [gf.u· (b, b', k, k, a) exp (± ik3h3zz') 

- gf.u· (b, b', k, k, a) exp (=t= ik3b3zz')] dkx dky, (13) 

where kN = 7rN/(N+1), bi (i = 1, 2, 3) is the fun­
damental vector of the reciprocal lattice. 

As above, we can separate in (13) the compo­
nents that give the local contribution to the polari­
zation. We then arrive at Eq. (7), in which one 
must now integrate over the volume L2Z, {31 is ob­
tained from (8) by the replacement of La by L2z, 
and x1 from the K- appearing in (13) by replace­
ment of g- by g-1 and 6 by 6". 

a a 
It is not difficult to prove that a solution of (7) 

which does not depend on x and y, exists with the 
given kernel. We further assume that one can sep­
arate excitons with transverse and longitudinal po­
larizations in a cubic crystal at small k. Finally, 
the tensors entering into (7) in the case of a cubic 
crystal reduce to scalars; therefore, one can con­
sider a field with fixed polarization. Let [8 ( z ) be 
directed along the y axis. Omitting the corre­
sponding signs, we obtain 

l 

d2~2;z) + '11 [8 (z) + i1 ~"~~'X (z, z', b, b', a) 18 (z') dz' = 0. 
« bb' 0 (14) 

Here the sum over a takes into account only the 
transverse excitons, b = nb3z ( n an integer), 
TJ = y{3, p = 47ryL2Z/liw, 

X (z, z', b, b', a) 

kN 

= exp [ i2n (bz - b' z') l ~ r;;- (k, a) go (b, k, a) 
k=-kN 

X exp (ikz) [g~ (b', k, a) exp (- ikz') - g~ (b',- k, a) 

X exp ( ikz')], 

where 

fo (b, k) = f (nba, k) lkx. y=O• 

(15) 

t = r, g. 

As is shown in the Appendix, the solution of (14) 
has the form 

18 (z) = ~Cs exp (ix5z), (16) 

where Ks are the roots of the equation 

- X2 + '11 + p ~· g~ (0, 0, x, x*, a) r~ (x, a) = 0, (17) 
« 

and it is assumed that (11) is satisfied for all s for 
which Cs is large; the quantities cs satisfy the 
equations 

~c.exp(ix.l)~ exp(-2nbl) [k~qr;(b,k~q,a) 
s b 

+ (x.- 2nb) r; (b, k~q. a)]= 0, 

r"t- (b, k, a) 

= [g~ (b, k*, a) ± g~ (b,- k .. a)] [(xs- 2nb)2- k2]-I, 

(18) 

where k~q are the roots of the equation 

Eo (k, a) - ieo (k, a, w) - E (w) = 0, q = 1, ... , m"-, 
(19) 

and the sign on kaq denotes the sign of the imagi­
nary part. 

The number of components in (16) exceeds the 
number of equations in (18) by two, so that there 
are exactly two independent quantities among the 
cs. The results that have been given are valid in 
the case of a sufficiently thick plate. From (16), 
the Maxwell boundary conditions, and the additional 
conditions (18), one can find the waves reflected 
from and emerging from the plate. The corre­
sponding formulas are very cumbersome in the 
general case and we shall not write them out. 

3. EXCITONS OF ZERO AND FIRST ORDER 

We consider the simplest case in which the sum 
(17) contains only one component, and E ( w) 
~ E0( 0, a). Under these conditions, (11) is satis­
fied for all s and we can therefore set K = 0 in 
the numerator of r in (17), and expand E0( K, a) 
in the denominator and in (19) in powers of K, re­
stricting ourselves to the quadratic term. More­
over, we can neglect the dependence of Eo on K 

and w: In this case (19) yields two roots k- = -k+, 
which are small, and which makes it possible to 
neglect components in (18) with b ~ 0. Omitting 
a, we get from (17)- (19) 

- x2 + '11 + pg~ (0, 0, x, x*) [Eo (0) -Eo] 

X (sx2 - ie - ~t1 = 0; (20) 

~c. [k+r+ (0, k+) + x.r- (0, k+)] = 0, 

~ Cs exp (ix.l) [k-r+ (0, k-) + x,r- (0, k-)] = 0; (21) 
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£ (k± )2 - ie - ~ = 0, (22) In the case of a semi-infinite crystal, we then ob­
tain 

where t = E ( w) - E0( 0 ), ~ = n2/2m*, m* is the 
effective mass of the exciton. 

We consider two cases, in which 

go = g0 (0, 0) =I= 0 

and 

g~ = (dgo (0, k) /dk)o =I= 0. 

In these cases, we can speak of excitons of zero 
and first order, respectively (or of dipole and 
quadrupole excitons ) . Excitons of zero order are 
found in anthracene, and of first order in copper 
oxide (references to the corresponding experi­
ments are given in the paper of Pekar et al. 4 ). For 
excitons of zero order, we can regard g0( 0, k) 
= g0 in (20) and (21); here, (20) - (22) are identical 
with the corresponding results of Pekar. 2•3 Thus 
the results derived are approximately valid for 
frequencies arbitrarily close to the resonant fre­
quency point k = 0. 

We now consider excitons of first order, as­
suming g0(0, k) = g0k for them. Here the solu­
tions of (20) are ±Kj, j = 1, 2, 

x7 = <£11 + ~ + ie +IX + (- 1)1 [(£TJ + ~ + ie + a) 2 

- 4£TJ (~ + ie) 1'1'}/2£, 

where a = p I g0 I [ E0( 0) - E0 ] , which are identical 
with the corresponding results of Pekar et al. 4 It 
is now convenient to write (16) in the form 

& (z) = ~ let exp (ix1z) + cj exp (- ix1z)l. 
/=1,2 

In corresponding fashion, (21) yields 

~ n (ct- cj) = 0, 
i=1,2 

~ Yt let exp (ixi[)- cj exp (- ix1[)] = 0, 
/=1.2 

Let the incident, reflected, and transmitted 
waves have respectively the forms 

&0 exp (ikoz), R exp (- ikoz), B exp ( ikoz). 

(23) 

From the Maxwell boundary conditions and the ad­
ditional conditions (23), we find* 

B = Ai2uw exp (- iko[); 

A = &0 (u2 - v2 +w2 + i2vwtl, 

u = '\'1 I sin X2l - '\'2 I sin xil, 

w = ('\'1'X2- '\'2Xl)/ko. 

*ctg =cot. 

Brx; = 0, 

which gives the generalization of the correspond­
ing Fresnel formula with account of spatial dis­
persion. 

We note that in the case of excitons of first 
order one should have, for greater consistency, 
considered higher approximations in the material 
equations. 5 

4. WAVES IN A PLATE OF ARBITRARY THICK­
NESS 

As is seen from the Appendix, the solution of Eq. 
(14) used above is inappropriate for sufficiently 
small l. Here we obtain a solution appropriate 
for arbitrary Z, limiting ourselves to the case in 
which the sum over a in (14) contains only one 
component (an isolated exciton band) and E ( w) 
~ E0( 0). In this case the terms of the sum over 
k in (15) vanish, for smooth functions & (z ), with 
increase in I k I so that for all z the principal 
role in the last component of (14) is played by 
terms with small I k I, as a consequence of which 
one can discard terms with b and b' ?"' 0 and keep 
the first non-vanishing term in the expansion of 
go( 0, k) in powers of k. We note that for excitons 
of zero order this agrees in accuracy with the ap­
proximate theory of Pekar. 2 

In the case of excitons of zero order, we obtain 
in this fashion 

1t 00 

d2 3'' (I) + •r,p• (t) \ ~ t' ~ TJ co +.) .LJ 0 (n) sin nt sin nt' &' (t') dt' = 0, 
0 n=l 

t = (nl l)z, &' (t) = & (z), 

f'(n) = (l I n)3 f (kn), 

f 
0 

(kn) = {(2p I l) I go J
2 r~(kn), n<; N 

0, n>N. (24) 

We now seek the solution of (24) in the form 
00 

&' (t) = ~ an sin nt, 0 < t < n. 
n=l 

Taking it into account that 

c0 = (2/n) !&' (n) - &' (0)), d0 = (2/n) &'(0), (25) 

we can differentiate termwise the cosine series6 

and obtain 

Gn = n (do-(- I)n (co +do)] [n2 - 11'- (n/2) f~(n)]-1 • 
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Further, denoting 
00 

crp= ~ (- wn [TJ'+ ~ f~(n>][n2 -T]'- ~ f~(n)r. 
n=l 

we obtain 

d/8' ldt lo = C0/2 + d0a2 - (c0 +do) ai, 

d/8' ldtl, = c/2 + d0ai - (c0 +do) a2. (26) 

(25), (26) express &' and d/8' /dt on the surface of 
the plate in terms of the constants c0 and d0, which 
play the role of arbitrary constants. 

With the help of the Maxwell boundary conditions, 
we find the amplitudes of the reflected and trans­
mitted waves: 

Ro =Ao [kgZ2-4(a2 -ai) (1- ai- a2)], 

B0 = A 0 i2k0l (1- 2al) exp (- ik0l); 

A0 = /80 [kgl2 + 4 (a2- a1) (1 - ai- a2) 

+ 2ik0 l (1 - 2a2)]-1 • 

In the case of excitons of first order, (14) and 
(15) yield the following expression in the approxi­
mation under consideration: 

" 00 

d2~;.(t) -1- TJ'/8' (t) + ~ ~ f~ (n) cos nt cos nt'/8' (t') dt' = 0, 
0 n=I 

where f1 ( kn) is obtained from f0( kn) by replacing 
I g0 12 by I g0 12 kfi.. Working in a fashion similar to 
the above, we obtain the amplitudes of the reflected 
and transmitted waves 

2 I I I I 41 RI =AI [4k012 (ai- a2) (liT]' -a I - a2) + n , 

BI = Aii·2k0 ln2 (1/T]'- 2a~) exp (- ik0 l); 

AI = &o [4k~l2 (a~- a~) (liT]' -a~- a~) 

-n4 - i2koln2 (1/T]'- 2a~)J-I, 

' ~ pn [ :rt ' ]-I ap = ~ (- 1) n2 - TJ' - 2 fi (n) . 
n=I 

5. ABSORPTION 

In the presence of spatial dispersion, there is 
meaning to considering only absorption throughout 
the entire volume: 

W = iffi ~ /8y(r) P; (r) dr + compl. conj. 

where the bar denotes averaging over the period, 
while &y( r) and Py( r) are the amplitudes of the 
electric field intensity and polarization. We re­
solve &y( r) into a solenoidal part and an irrotational 
part, in accord with which we obtain 

Further, substituting (2), in the expression 

P x~ ( r) = ~ Kx 1y1 ( r, r') &T; ( r') dr' (28) 

obtained in reference 1, and (3) in (24), and takiing 
(4) into account, we find that wll = 0. Finally, by 
introducing (28) and the relation Kx'y' = Qx'y' 
+ Rx'y' which figures in reference 1, ( Qx'y', Rx'y' 
are the Hermitian and anti-Hermitian parts of the 
kernel) into (27) we obtain 

W = - 2iffi ~ Rx'y' (r, r') &f.* (r) &z' (r') dr dr'. 

Thus the absorption for a given field is deter­
mined by the anti-Hermitian part of the polariz­
ability kernel, just as the absorption is determined 
by the anti-Hermitian part of the polarizability 
tensor in the absence of spatial dispersion. 

It is seen from (3) that Rx'y' "' E when fiw 
,c. En- E0• Therefore, upon satisfaction of the in­
equality mentioned, the absorption must tend to 
zero if E - 0. It is not difficult to prove that the 
expressions obtained above for R, B, R0, B0 and 
R1, B1 satisfy this condition. 

In conclusion we note that in this research, 
just as in reference 1, we did not make any dis­
tinction between the average and effective values 
of the field. Therefore, the results obtained apply 
only to the case in which these values are identi­
cal. The general case needs special consideration. 

APPENDIX 

We consider the integral which appears in (14): 

I 

I (z, b, b', a)= ~X (z, z', b, b', a) 18 (z') dz', 
0 

where 18 ( z) is given by Eq. (16). In view of the 
fact that (14) is a differential equation, it suffices 
in the case of large l to know I for z not too 
close to the boundary values. For such z the 
principal contribution to I is made in the summa­
tion over k in (15) by the immediate vicinity of 
the points ±Re Ks and Re kaq· Let us consider 
the contribution made by the points ±Re Ks· In 
view of (11), only the terms with b and b' = 0 are 
important: 

I. (z, 0, 0, a) = c.r~ (- ia!oz, a) go (0,- ia!oz, a) 

x [g~ (0, (- ia!oz)*, a) I; (z) - g~ (0, (iiJ/iJz) ·, a) I; (z)], 

I 

rt:- (z) = ~ ~(s) exp [ ik (z ± z') + ixsz' l dz'' 
0 k 

w = w.t + w11 , 

w.t· 11 = iffi ~&;}-·a (r) P; (r) dr + compl. conj. 

where the summation is carried out over the values 
k = (7r/Z) v which lie close to the points ±Re Ks· 

(27) Inasmuch as the vicinities of the points mentioned 
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make the principal contribution, we can extend the 
summation over all k. Then 

I, (z, 0, 0, a) = 2lc,g~ (0, 0, x,, x:, a) r~ (x,, a) exp (iY,z). 

(A.1) 

We now consider the contribution of the points 
kaq: 

I~ = ~ ~ c, ~(q) exp [i (2nb + k) z] r~ (k, a) go (b, k, a) 
q s k 

{
, exp(i(x,-k-2nb')l]-1 

X go (b', k, a) i(x,-k-2nb') 

, , exp (i (x5 + k- 2nb') 1]-1} 
-go(b • -k, a) i(x,+k-2nb') ' 

where the summation over k includes the vicinity 
of the points kaq· We transform from summation 
over k to integration; this is possible in the case 
of sufficiently large l. Here, we must replace 
eikl in the second term in curly brackets by the 
equivalent expression e-ikl to obtain a smoother 
function of k. Furthermore, we can close the con­
tour of integration in the lower half-plane in the 
interval containing eik( z -l>, and in the upper half­
plane in the interval containing eikz. Then, with 
the aid of residues, we find 

foc =- 2l~~c,eiznbz {exp lik:q (z -l) + i (x,- 2nb')l] 
q s 

X Ps (b, b', k~q, a) + exp (ik~qZ) Ps (b, b', k~q. a)}, 

Ps (b, b', k, a) 

= [ g~ (b, b', k, k•, et) _ g~(b, b', k,- k•, et)] Eo (k,. et) -Eo 

l x,- k- 2nb' x, + k- 'l:"b' dE0 (k, et) 1 dk 

(A.2) 

Taking into account (A.1), (A.2), (16) and (14), it is 
easy to obtain (17), (18). We write (17) in the form 

<p (x) +'IJl (x) = 0; 

<p (x) = (- x2 + TJ) TI" lE0 (x, a) - ieo (x, a, w) - E (w)], 

'l" 'ljJ (x) = p .LJ g~ (0, 0, x, x·, a) 
rJ. 

X fi lE0 (x, a')- ie0 (x, n', w)- E (w)J. 
Cl.'"'=Cl 

<P ( K ) and ljJ ( K ) are analytic functions of K. The 
number of components in (16), N1, is equal to the 
number of zeros of <fJ ( K) + ljJ ( K) lying close to 
the origin of the coordinates, in accord with (11). 

"'\'" The number of equations in (18) is N2 = LJ ma. 
0! 

We shall show that N1 = N2 + 2. We draw the 
closed contour C in the plane passing through the 
points - 1r/d, + 1r/d so that for them I K I 2:: 1r/d 
and <fJ ( K ) , ljJ ( K ) do not vanish on them. Inasmuch 
as I K I is large on C, then I <fJ ( K) I > 11/J ( K ) I > 0 
on C. Then, by Rouche's theorem, 7 the number of 
zeros of <fJ ( K) + ljJ ( K) inside C is identical with 
the number of zeros of <fJ ( K), which is obviously 
equal to N2 + 2. 
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