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A body located in a varying external field can execute periodic motion by absorbing the field 
energy and dissipating it in the viscous medium, if the magnetic susceptibility or electric 
polarizability of the body are anisotropic. The absorption coefficient has a resonant depend
ence on the frequency of the external field. In particular, only periodic oscillations of nuclei 
of a certain size are possible for the liquid-solid transition. 

THE purpose of this research was to ascertain 
whether electromagnetic energy at audio frequen
cies (classical effect) can be absorbed, as a result 
of anisotropy of the magnetic susceptibility (or 
electric polarizability), by macroscopic bodies im
mersed in a liquid. Such bodies acquire in an ex
ternal magnetic field a magnetic (or electric) mo
ment of direction, in general, different than the 
field; under certain conditions this should lead to 
periodic motion of the body and to a corresponding 
absorption of energy. To be specific, we shall re
fer henceforth to the magnetic moment of an aniso
tropic nucleus of solid phase floating in a liquid. 
Let the nucleus be spherical with principal mo
ments of inertia Ix = Iy = Iz = I, let the components 
of the magnetic susceptibility tensor be Xx = Xy 
¢ Xz• and let the external magnetic field be F. 

We introduce two rectangular coordinate frames, 
one moving with axes xyz aligned with the princi
pal inertia axes of the nucleus, and one stationary 
~TJ {;, with the {; axis in the direction of the exter
nal field. The cosines of the angles between the 
direction of the external field and the axes of the 
moving frame will be designated 'Y1• 'Y2• and 'Y3· 
They can be expressed in terms of the Euler 
angles e, If!, and cp: 

jl = sin <p sin 6; 12 = cos <p sin 6; ra = cos 6. (1) 

The equation describing the rotary motion of 
the nucleus has the form 

dL!dt = [MF] - ~ro, (2)* 

where L is the angular momentum of the nucleus, 
w is the angular velocity of rotation, Mi = XiFi 
is the magnetic moment induced in the field F, 
and 8 is the moment of the force of resistance to 
rotation in a viscous liquid. 

*[MF1 ;= M X F. 

We project (2) on the axes of the moving coordi
nate system: 

!dwxfdt = - t:.xPr2ra- ~wx. ldwy!dt = t:.xPr1ra- ~wu, 

fdwzfdt = - ~Wz. (3) 

It is quite obvious that undamped motion of the 
nucleus is possible in the presence of an aniso
tropy ~X = X z - X x ¢ 0 · 

Euler's dynamic equations (3) must be solved 
simultaneously with Euler's kinematic equations 

Wx = '!i11 + 0 COS (jl, Wy = 'lirz - a· Sin ff, 

UJ 2 = tjlya + ~. 
It is also useful to employ the fact that the axes 
~. TJ, and t are stationary: 

dy1/df = j2UJ 2 - j3Wy; dy2/df = j3UJx - jllOz; 

dya/dt = jlUJg- j2Wx. 

(4) 

(5) 

To ascertain the energy absorption, we are in
terested in the undamped solutions of the system 
(3)-(5). The last equation of (3) has only damped 
solutions wz = C exp {- Bt/I}. Therefore, for 
sufficiently large t, we can assume 

Wz = 0. (6) 

Multiplying the first two equations of (3) by 'Y1 
and y 2 respectively, adding them, and using (5) 
we obtain 'Y1 Wx + 'Y2Wy = C1 exp {- 8t/I}. For the 
reasons indicated above, we put 

(7) 

The physically obvious conditions (6) and (7) sig
nify that the external field cannot cause the nucleus 
to rotate in either the plane perpendicular to the 
external field or in the plane xy where the sus
ceptibility is symmetrical. 

Substitution of (4) in (7) leads to the following 
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solution of the problem of periodic motion of the 
anisotropic nucleus: 

'ljJ = const, q> = const, (8) 

and the nutation angle e is a solution of the differ
ential equation 

IS + ~e + ~ 11xP sin 26 = 0. (9) 

Assuming that the external field is a monochro
matic wave F = F0 cos pt and expanding sin 28 we 
obtain 

e + 2x0 + (!)~ (1 +cos 2pt) ( 1 - f 62) 6 = 0, 

X= ~/2/, (!)~ = F~l1y)21. (10) 

All the coefficients of (10) can be expressed in 
terms of the parameters of the substance and the 
radius R of the nucleus. The moment of the forces 
of resistance to the rotation of the sphere is [!] 
8 = 8'1TR3A, where A is the coefficient of viscosity 
of the liquid; the anisotropy of the susceptibility 
of the nucleus is t:.x = ( t:.x)m4'1TR3 p/3, where 
( t:.x)m is the anisotropy of the specific suscepti
bility (polarizability) of the solid phase, p is the 
density, and the principal moment of inertia of the 
sphere is I = 8'1TpR5/15. Then 

X= 7.5"A/ pR2, (!)~ = 1,25 (f1"J.,)mf~W2 • (11) 

Equation (10) takes account also of the nonlinear 
terms. The solution of the linear differential equa
tions contains constant factors determined by the 
boundary conditions. Account of the nonlinearity 
enables us to find the characteristics of the steady
state motion independently of the initial conditions, 
which is precisely the purpose of our investigation. 

Assuming the nonlinearity small, we rewrite 
(10) in the form 

e + 2x8 + ro~ (1 + a cos 2pt) 6 + v (t, 6) = o, 

v (t, 6) =- + ro~ (1 + !J. cos 2pt) 63• <12> 

For convenience we have introduced in (12) the 
parameter a = 1. In the linear approximation we 
have 

.. . 2 
6 + 2x6 + ro0 (1 + <:1. cos 2pt) 6 = 0. (13) 

Equations similar to (12) and (13) are encoun
tered in various problems where the parameters 
of the system have periodically variable parame
ters, as in the case of parametric resonance; these 
have been treated in an extensive literature.C2-6] 

We consider the existence of periodic solutions 
of (13) first, after which we take account of the 
nonlinearity [Eq. (12)]. Periodic solutions of (13) 
are not obtained for all values of the coefficients 

0( 

1,0 

0,5-

J Wg/P 

K and w0, i.e., according to (11), not for all values 
of R. Let us investigate the dimensions R of 
nuclei capable of executing periodic motions in a 
field of a given frequency p. The figure, plotted 
in coordinates a and w0/p, shows the instability 
and stability regions of the solutions of the 
Mathieu equation, to which Eq. (13) reduces when 
K = 0. When friction is taken into account, the in
stability regions shrink and shift upward, the 
shift increasing with increasing w0 (for given p). 
The instability regions for K ;<! 0 are shown shaded 
in the figure. 

In our problem the periodic solutions of (13) are 
determined by the intersection of the line a = 1 
with the boundaries of the shaded regions. The 
number of intersections is finite, since the bounda
ries of the instability regions of the solutions shift 
upward with increasing w0/p. The fact that the 
abscissas of these points have a maximum 
abscissa denotes the existence of a minimum di
mension Rmin of the nucleus capable of executing 
periodic oscillations in the external field. It is 
likewise obvious that there exists a value Rmax• 
determined by the abscissa of (w0/p)min in the 
figure. Thus, periodic oscillations and absorption 
of energy from a specified external field 
F = F 0 cos pt by the nuclei are possible only if 
the nuclei have certain resonant dimensions 
Ri ( i = 1, 2, ... , n), with Rmax?:: Ri ?:: Rmin· 

Mathieu equations [when a = 1 in (13)], cannot 
be solved analytically, but the determination of 
the numerical values of the coefficients w0 and K, 

for which (13) has periodic solutions, is in princi
ple a simple although cumbersome problem.* 
After compiling such a table, it is necessary to 
calculate the resonant nuclear radii Ri for the 
specific substance [ ( t:.x)m, A in (11)] and for 
the specific experimental conditions (amplitude 
F0 and frequencies p1, p2, ••• , of the external 
field). 

Turning now to Eq. (12), let us investigate the 
dependence of the amplitude of the nucleus oscil
lations at the frequency of the external field. Let 
the coefficients (11) of Eq. (12) be such that the 
periodic oscillations of the nucleus correspond to 

*This effort is justified if suitable experiments are set up. 
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the first instability region in the figure. Since 
small nonlinearity is assumed, we seek an ap
proximate solution of (12) in the form 

Substituting (14) in (13) and equating the coeffi
cients of sin pt and cos pt to zero we obtain 

A1( wg- p2 - w~j 2)-T co~ A1A2 

- 2xpB1 + + w~Ai = 0, 

+ 2xpA1 - + w~B~ = 0. 

(14) 

(15) 

In (15) we have introduced the oscillation ampli
tude A= (A12 + B12)112• 

To make the results clear, let us assume that 
the cubic terms in (15) are small and let us neglect 
the last terms in the left halves of (15).* Then the 
vanishing of the determinant of (15) leads to the 
following frequency dependence of the square of 
the oscillation amplitude: 

A2 = 2w~2 [w~- p2 ±(w~j 4- 4x2p2)"']. (16) 

The nucleus will execute periodic oscillations only 
if 

w~>4xp, (17) 

i.e., the attenuation due to viscosity must not be 
too large. t Periodic oscillations are possible at 
external-field frequencies for which A2 > 0. The 
condition A2 = 0 determines the boundaries of the 
resonant frequency band. 

Thus, the solution of (13) assumes the form 

e = A sin (pt- tl), tg b = 2xp I lw~l 2 ± (w~ I 4- 4x2p2)'1•], 

A= {2w02 [w~-p2 ±(w~/4-4x2p2)'1•)}'1•. (18)t 

The absorption coefficient 'Y is expressed in 
terms of the density of the dissipative function 
F/V = B8o/2V as 

r = 8:n: 1 F 1 1 pF~v. 
For a comparison with experimental data, it is 

necessary to average over the period of variation 

*A more exact solution of (15) and an account of the higher 
harmonics of the nucleus [in addition to (14)] can be obtained 
by successive approximations. 

tThe criterion (17) agrees poorly with the condition that 
the Reynolds number be small, i.e., at such high frequencies 
the moment of the friction forces is proportional, generally 
speaking, to the angular velocity raised to a power higher than 
the first. The subsequent calculation is therefore only qualita
tive. The disparity indicated occurs only for resonances at 
the overtones of the external field (parametric resonance) 
and obviously not at undertones of the field (resonance of the 
n-th kind), 

Hg =tan. 

of the angle of revolution e. As a result we obtain 

(19) 

As can be seen from (19), for nuclei of given 
dimension, the dependence of the coefficient of 
absorption on the frequency of the external field 
is of resonant character. 

At each instant of time t of a real liquid-solid 
transition the nuclei have a certain distribution 
over the dimensions R. The distribution function 
N(R, t) can evidently be determined with the aid of 
the kinetic equation in the particle dimension space. 
We can then obtain (with account of the remarks 
made in the last two footnotes) the frequency de
pendence of the absorption coefficient and of the 
susceptibility (polarizability), suitable for direct 
comparison with experiments. 

The energy-absorption mechanism considered 
above can be used to investigate the kinetics of 
the liquid-solid transition of magnetically-isotropic 
or electrically-isotropic bodies, the number of 
which is quite large. D. N. Astrov and A. V. 
Voronel' of the Laboratory of the Institute of 
Physico-Technical and Radio Measurements have 
observed electromagnetic absorption at acoustic 
frequencies in the melting and crystallization of 
benzene. This absorption was observed only during 
the phase transition process and not in the solid 
and liquid phases. 

The author is grateful to I. E. Dzyaloshinskii 
for valuable advice and A. V. Voronel' for discus
sions. 
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