
SOVIET PHYSICS JETP VOLUME 14, NUMBER 2 FEBRUARY, 1962 

A NEUTRAL MODEL FOR INVESTIGATION OF 1T1T SCATTERING 

A. V. EFREMOV, CHOU HUNG- YUAN, and D. V. SHIRKOV 

Joint Institute for Nuclear Research; Institute of Mathematics, Siberian Division, 
Academy of Sciences, U.S.S.R. 

Submitted to JETP editor March 20, 1961 

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 603-611 (August, 1961) 

An equation describing the scattering of low energy neutral pseudoscalar mesons is investi­
gated. A general solution of the equation is derived, similar to that obtained by Castillejo, 
Dalitz, and Dyson[ 12] for the Low equation. Two different types of asymptotic behavior of 
the solutions at high energies are possible. If the amplitude decreases as (ln E) - 1 at high 
energies, the solution corresponds to the renormalizable perturbation theory. In the second 
case, when the amplitude decreases as' E-4, the solution does not correspond to perturba­
tion theory. In a certain sense it can be connected with the nonrenormalizable Lagrangian 
[ ( ocp I OXn) ( ocp I oXn) ]2• This second solution possesses some interesting properties. In par­
ticular, it becomes degenerate when the interaction is switched off. 

!.INTRODUCTION 

ATTEMPTS have been made in recent years to 
construct a theory of strong interactions in the low­
energy region by starting from the analytic proper­
ties of the scattering amplitudes in the form pro­
posed by Mandelstam [1] and from the unitarity 
conditions. 

The arguments were based on the premise that 
the phenomena in the low-energy region admit of 
description in closed form. Mathematically this 
hypothesis reduces to the assumption that the be­
havior of an analytic function is determined in a 
small region by the near-lying singularitiesPJ 

The restriction to the low-energy region en­
ables us to write down an approximate unitarity 
condition in which only two-particle intermediate 
states are taken into account. This approximate 
unitarity condition, together with the spectral 
representation, makes it possible to write down [1•3] 

a closed system of nonlinear integral equations 
for the scattering amplitude as a function of two 
variables. 

In view of the complexity of such equations, 
still another approximation is made by repre­
senting the scattering amplitude in the form of a 
small number of first terms of its expansion and 
Legendre polynomials. Chew and Mandelstam [4] 

have obtained in this manner a closed system of 
nonlinear integral equations for the lower partial 
waves of the pion-pion scattering. Subsequently 
analogous equations were obtained for several 
other processes (see [s,s] and others). In the 

analysis of the anti-Hermitian part of the ampli­
tude in the cross integral, these authors use ana­
lytic continuations in the Legendre polynomials 
into the region I cos (} I > 1. But the use of only 
the first terms of the Legendre series leads to 
large errors,C7- 9J which are particularly large at 
high-energy crossing processes. The integrals 
of the higher partial waves are found to be diverg­
ent, and the solutions of the equations are unstable 
against small perturbations in the region of high 
energies. Analytic continuation in Legendre poly­
nomials, in particular, led to contradictions [10] 

when attempts were made to determine the param­
eters of the resonance of the p-phase of rrrr scat­
tering from the rrN scattering and from the nu­
cleon structure, and also to the impossibility of 
obtaining a stable solution of rrrr scattering equa­
tions with large p-wave.C11J 

Thus, the use of analytic continuation in Le­
gendre polynomials leads in final analysis to a 
contradiction of the original assumption that the 
low-energy region is closed. The foregoing diffi­
culties can raise doubts concerning the possibility 
of constructing a closed theory of strong interac­
tions at lower energies. In our opinion, however, 
there are still not enough grounds for such pessi­
mism. It is quite possible that the foregoing dif­
ficulties can be overcome by a somewhat different 
approach, proposed in [B,s], to the derivation of 
equations for the partial waves. In this deduction 
no use is made of analytic continuations in Le­
gendre polynomials, and the equations for the 
partial waves differ from the Chew-Mandelstam 
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equations in the structure of the crossing integrals. 
These integrals have, in particular, better con­
vergence at high energies. 

The aforementioned program may make it pos­
sible to describe the phenomena at low energies 
without internal contradictions. For this purpose, 
naturally, it is necessary to solve numerically the 
equations for partial waves of different processes, 
and above all for the pion-pion scattering. The 
latter were obtained by Hsien Ting-ch'an, Ho Tso­
hsin, and Zoellner, and in simpler form under the 
assumption that the d and f waves are negligibly 
small compared with the s and p waves, as was 
done in[8J. In the derivation of these equations, 
only rigorously proved dispersion relations for 
forward scattering were used. 

To solve these equations numerically it is nec­
essary to have an idea of at least some general 
properties of the solutions of equations of this 
type. However, an analytic investigation of the 
equations derived in [8] is a complicated matter. 
We therefore consider first the neutral analogue 
of the system of equations obtained in [ 8]. This 
analysis will lead to several important conse­
quences, which must be taken into consideration 
in the analytic investigation and numerical solution 
of such equations. 

2. EQUATION AND BEHAVIOR OF SOLUTION AT 
HIGH ENERGIES 

In the case considered here, the scattering am­
plitude A is a scalar function of three ordinary 
invariant arguments 

s=4(v+1), u=-2v(1+c), 

t = -2v(1 -c), (2.1) 

where v = q2/!J.2 and c =cos e; q and e are the 
momentum and scattering angle in the center-of­
mass system. By virtue of the crossing symme­
try, A is symmetrical under commutation of any 
pair of arguments (2.1). Consequently its Legendre 
series contains oniy even l. In accordance with 
our program,C8•9J we identify the forward scatter­
ing amplitude with the s-wave 

A (v, c) = A0 (v) = A (v). (2.2) 

Using the symmetry of the amplitude with re­
spect to commutation of s and u, and taking into 
account the fact that 

A (v) = lim A (v + ie), 
<-++O 

we obtain 

A(-v-1) = A*(v). (2.3) 

The unitarity condition for the s-wave can be 
written in the form 

ImA(v)=K(v)JA(v)J2 , v>O; 

K (v) = Jl vj(v + 1 ). (2.4) 

This formula is accurate only up to the threshold 
of the first inelastic process at v = 3. We shall as­
sume, however, that (2.4) is valid for all positive v, 
presupposing that this assumption hardly influences 
the solution at small v. Formula (2.4) limits the 
function A ( v ), and consequently in writing the dis­
persion relation it is sufficient to employ one sub­
straction, which we perform at the symmetrical 
point v = - Y2• We obtain 

00 

A (v) = A, + v + 1/z \ Irn A (v') { 1 + 1 } , ( 
:rt .) v'+t;. v'-v v'+v+1 dv. 2.5) 

0 

From (2.5) it is seen that the assumption 

lim Im A (v) = C > 0 
V->00 

leads to a logarithmic growth of the real part, and 
consequently, to a contradiction. Consequently 
A ( 00 ) = 0, and we can therefore write the equation 
for A ( v) without subtraction: 

00 

A (v) =_!_I Im A (v') {-1- + 1 } dv' 
:rt .) v' - v v' + v + 1 · 

(2.6) 
0 

From (2.6) it also follows that 
00 

'), = ~I Irn A (v') d , '> 0 
:rt .) v' + 1/z v / · 

(2. 7) 
0 

Thus, Eq. (2.6) without subtraction is mathematic­
ally equivalent to Eq. (2.5) with subtraction. It 
follows therefore that the arbitrariness in the so­
lution, connected with the parameter A., is not a 
consequence of the subtraction. 

3. SOLUTION OF THE EQUATION 

We first introduce a new variable 

w = (2v + 1)2 , A (v) = B (w). 

Equations (2.4) and (2.6) assume the form 

and 

Im B (w) = k (w) 1 B (w) 12, w > 1; 

k (w) = I(Yw- 1)/(Jf-;;; + 1)1'1• = K (v) 

00 

B (ro) = _!_ \ Irn B (w') dw'. 
n: J ro'- ro 

1 

(3.1) 

(3.2) 

(3.3) 

Equation (3.3) is solved by the method of 
Castilleja, Dalitz, and Dyson.C12] We consider for 
this purpose the function B ( z ) in the complex 
plane z = w + iy. The function B ( z ) has the fol-
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lowing properties: 1) it is analytic in the plane z 
with cut [ 1, oo ), and 

B* (z) = B (z"). Im B (w + iO) = k (w) I B (w + iO) \2 ; 

2) it is a generalized R-function, i.e., 

Im B (z) = A (z) Im z, 
00 

A (z) = _!_ \ k (w') I 8 (w') 12 dw' > 0 
:n: ) I w' -z 12 ' 

1 

consequently B ( w) has zeros nowhere except on 
the real axis and at an infinitely remote point; 
3) when w :5; 1 we have B (w) > 0; 4) it can have 
any number of isolated zeros on the segment of 
(1, oo). 

Let us consider the function 

00 r k (w') dw' ,;-:-: ,r; 2 ( 1 .) 
I(w)=w)w'(w'-w)=n-2rxQo(rx)-VxQo Vx, 

1 

v 
X=v+i' (3.9) 

and Q0 ( x ) = % ln [ ( x + 1 ) I ( x - 1 ) ] is the Legendre 
function of the second kind. 

As a result we obtain a solution of (3.3) in the 
form 

B (w) = A/[1- AI (w)ln- /,cw- AwR (w)l. (3.10) 

Here R (w) is determined from (3.6) while the 
constants y, c, and Rn satisfy the conditions (3. 7) 
and (3.8). The limitation (2.7) is a consequence of 
these conditions. 

H (z) = liB (z). (3.4) 4. COMPARISON WITH PERTURBATION THEORY 

H ( z ) has the following properties: 1) it is analytic 
and in complex plane with cut [ 1, oo ), whereupon 
H * ( z ) = H ( z *) and Im H ( w + i 0) = - K ( w ) on 
the cut; 2) it is a generalized R-function and con­
sequently has no zeros if Im z ;e. 0; 3) it has no 
poles anywhere except at ( 1, oo), where any num­
ber of isolated poles of first order is possible 
(this follows from 2 ), since higher-order poles 
do not have the properties of the R-function); 
4) it has no zeros on the real axis. 

We can therefore write the following general 
expression for H ( z ) : 

00 

1 z C k ( w') dw' 
H(z)=T-n~w'(w'-z) -cz-zR(z), (3.5) 

1 

where 

R (z\ _ '\;1 Rn 
1 -k..J w (w -z)' 

n n n 
1 < Wn < oo. (3.6) 

Let us verify the property 2). From (3.5) we 
have 

lm H (z) = -lm z (A' (z) + c + ~ Rn I I Wn- z 12). 

with 

n 

00 

A' (z) = _!_ \ k(w')dw' > O. 
rt J 1 w' - z 12 / 

1 

It follows therefore that 

Rn )>0, c)> 0. 

Let us verify now property 4). When w < 1 

(3. 7) 

H ( w ) is a monotonically decreasing function and 
in order for it not to have any zeros on this inter­
val it is therefore sufficient to have 

1/ A)> I (1)/n +c +R (1), (3.8) 

where 

Let us establish the correspondence between 
(3.10) and the results of perturbation theory. As­
suming A. to be small and expanding the denomi­
nator of (3.10), we obtain 

A (v) =A+..?::_ I [(2v + 1)2 ] + A2cw + A2wR (w) + 0 (A3). :n: 
(4.1) 

The first two terms of (4.1) correspond to the dia­
gram of first and second orders of perturbation 
theory, based on the Lagrangian 

(4.2) 

The fourth term corresponds to the pole contribu­
tions of the diagrams corresponding to the second 
order of perturbation theory for a Lagrangian of the 
following form (see in this connection Dyson's 
paper [la]) 

L)~>t = ~ gn<I>n (x) qJ2 (x), (4.3) 
n 

where the fields <Pn describe unstable particles 
with masses mn > 2. The correspondence between 
gn, A., mn, wn, and Rn can be readily established 
in perturbation theory. 

The third term can be set in correspondence 
with the non-renormalized Lagrangian 

(4.4) 

where f = 27TA.2c. Naturally, the correspondence 
with the Lagrangian (4.4) is arbitrary to a higher 
degree, since we cannot construct a consistent 
perturbation theory for such a Lagrangian. How­
ever, as shown by one of us (A.E. ), such a cor­
respondence can be established in the nonrelativ­
istic theory. 

We defer the discussion of this interesting fact 
and confine ourselves at the present time to an 
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analysis of the terms of (4.1) corresponding to the 
Lagrangian (4.2). 

Calculating the s-wave, we obtain from (4.2) 

A-p.t. (v) = A- 0 + "-~ A~!t. (v) + ... , (4.5) 

where the amplitude is renormalized at the point x 
v = 0, i.e., A. 0 = Ap.t. ( 0) and 

(2) ~~- v- 4 , 1 ) 
Ap.t. = 6 -2 r xQ0 ( x)- Vx Q0 \ vx 

2 1-XQ2( 1\ (4.6) - -x- o v:x). 

Expressions (4.5) and (4.6) must be compared with 
the first terms of (4.1), which can be written in the 
new normalization in the form (4.5), with 

(4. 7) 

Let us compare the second-order terms in (4.6) 
and (4. 7). Near the threshold we obtain: a) from 
perturbation theory 

A (2) ~ 8 X 52 2 ~48 3 + . p.t. ~ ---;;- - 45.:~, -315x ... ' 

b) from the solution of the integral equation 
A<z> ~ s 1s 2 24 3 

i.e. ~-Tx -15x - 35 x + .... 
At the threshold of the first inelastic process we 
get for v = 3 

A~:t (3) = -3.521, Ai~~- (3) = -3.323. 

We see therefore that in the region of low ener­
gies the solution of the integral equation corre­
sponds with good accuracy to the perturbation­
theory results. The error in the second-order 
term amounts at v = 3 only to 6 percent. This 
agreement confirms the hypothesis that the low­
energy region can be described in closed form. 

5. RESONANT BRANCH OF SOLUTION 

It follows from (3.10) that as v- oo the solution 
admits of two different asymptotic approximations: 

A (v) = rt I 2 In v, (5.1) 

corresponding to the absence of non-renormaliz­
able interactions, and 

A(v)=-1 jcv2 , (5.2) 

which corresponds to the non-renormalizable 
Lagrangian (4.4). These asymptotic expansions do 
not depend on the part of the R-function corre­
sponding to the unstable particles. We shall hence­
forth confine ourselves for simplicity to the case 
when there are no unstable particles or, what is 
equivalent, to the case when the phase does not 

vanish when 0 < v < oo. Then the solution does 
not admit of resonance in the case (5.1), and is 
resonant in the case of (5.2) and for small A. at 
the point 

Vr = + {(f...c)-'1'- 1} = + {Y rtf... /2f- 1}. (5.3) 

If A. and f are of the same order of magnitude, the 
resonance is in the low-energy region. 

The resonant solution for small A. can be writ­
ten in the form 

A(v)=-t-/[1-~~r~~-i ~ K(v)6(v)J 

+~/[I + 2~~~~ +it K(-l-v)6(-1-v)J. 

(5.4) 

In the limit, as A. - 0, the imaginary part of A ( v) 
is approximated by the ().-.functions: 

Im A (v) = f rtf... (vr +...!) {6 (v- Vr)- 6 (v +vr + 1)}, 
2 ~-~ 

and the real part is approximated by the pole terms 

ReA (v) = ~ ( Vr + ~- ){..,r !__ •; + Vr + ~ + 1} . (5.6) 

Thus, for fixed vr, the width of the resonance 
tends to zero in proportion to A., and at A. = 0 we 
obtain a non-zero solution. The scattering phase 
changes abruptly from 0 to 7f at the resonance 
point vr, the position of which is arbitrary. Thus, 
the solution is degenerate when A.= 0. 

We note that in this case the d-wave A2 will be 
proportional to the first degree of A.. It is ex­
pressed, however, in terms of a crossing integral 
with large denominator and is consequently small. 
Thus, for example, when vr = 3 and 0 < v < 6, 
the numerical estimates yield 

5A2 (v)/ A0 (v)~6%. 

It is quite probable that the solutions for the 
charged case also have an arbitrariness of the 
type (3.10). It can be shown that the solutions of 
the charged system should decrease at infinity. 
In addition to the logarithmic branch, correspond­
ing to renormalized perturbation theory, branches 
can exist in which the decrease at infinity is faster. 
When the interactions are turned off, these branches 
should lead to discontinuous phases, similar to what 
was described above. 

Let us make a few remarks on the possibility 
of obtaining the solutions (3.10) by the "N/D 
method" of Chew and Mandelstam (see [4]). 

The form of the integral representation for the 
function D depends essentially on the asymptotic 
form of the phase as v - oo • This representation 
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is determined with accuracy to a polynomial of 
degree n, [14• 15] where 

n= [b(O)-b(oo)]j:rt. 

The choice of representation in the form (V.12) 
of [4] corresponds to n = 0. By the same token, 
Chew and Mandelstam have earlier excluded the 
possibility ofanoddnumberofresonances in the 
partial waves. Therefore the equations such as 
(V.ll) and (V.12) of [4] cannot describe solutions 
of the form (5.4). Resonant solutions such as 
(5.4) call for the use of a second subtraction in 
(V.12). 

We note that a similar conclusion was reached 
by Taylor in his latest paper. [1s] 

We note also that in our opinion the equations 
of the "N/D method," such as (V.ll) and (V.12) 1 

cannot ensure crossing symmetry of the real part 
of the amplitude. 

6. DISCUSSION OF RESULTS 

Let us make first one formal remark. Solu­
tions (5.1) and (5.2) recall in many respects the 
model expressions for the Green's functions in 
the renormalizable and non-renormalizable theo­
ries proposed in [17•18]. 

Solution (5.1) is analogous to the expression for 
the photon Green's function. This solution satis­
fies the spectral representation without subtraction, 
[i.e., Eq. (2.6)]. However, if we attempt the ex­
pansion in powers of A. under the sign of the spec­
tral integral, we obtain after integration logarith­
mically divergent integrals in each order in A.. On 
the other hand, if we carry out one subtraction in 
the spectral representation, i.e., if we go over to 
(2.5), these divergences do not arise. 

The solution (5.2) corresponds in this sense to 
the non-renormalizable theory. If we expand the 
integrand in (2.6) in powers of A. and f, we obtain 
integrals whose degree of divergence increases 
with the power of f. These divergences cannot be 
removed by any finite number of subtractions. The 
solution (5.2) has thus no correspondence with per­
turbation theory. There are no grounds, however, 
for discarding this solution and for confining our­
selves to solutions of type (5.1), which actually are 
analytic continuations of perturbation theory to 
the region of not small values of A.. Solutions such 
as (5.2) are degenerate when the interaction is 
turned off. As was noted by Bogolyubov,C19] solu­
tions of this type are of great interest in many 
problems of statistical physics. We see now that 
such solutions can also turn out to be important 
in the theory of elementary particles. It is known 

that the 33-resonance in 1rN-scattering is suffi­
ciently narrow. A similar conclusion is reached 
also from preliminary estimates of p.:.resonance 
in 1r1r scattering. However, it is very difficult to 
obtain a narrow 33-resonanceP0•21] Even greater 
difficulties arise when attempts are made to ob­
tain a narrow p-resonance in 1r1r scattering.C22 •23] 

Solutions such as (5.2) lead to narrow resonances 
in a natural manner. 

On the basis of the explicit form of the solution 
(3.10), we can draw the following important con­
clusion. 

The integral equations obtained from the dis­
persion relations, from unitarity conditions, and 
from crossing symmetry do not lead to an ambigu­
ous description of the scattering processes. In 
order to determine the solution completely, it is 
necessary to specify an (infinite!) set of param­
eters. 

This fact is not surprising. The dispersion 
relations reflect only the very general properties 
of the theory, such as causality and relativistic 
invariance, and do not give any details on the 
specific interaction mechanism. In this sense, 
the situation in relativistic dispersion theory cor­
responds fully to the situation in the nonrelativ­
istic models (see, for example, [13]). 

Thus, in order to obtain a theory from the in­
tegral dispersion equations, it is necessary to 
specify many other properties of the solutions 
of these equations. For example, in the neutral 
case under consideration, it is sufficient to spe­
cify the value of the amplitude at the threshold of 
the process, to state the asymptotic behavior at 
infinity, and to stipulate that the scattering phase 
not vanish. Similar limitations can be imposed 
by introducing fixed subtraction constants. The 
threshold value is specified by the first subtrac­
tion. Specification of the second subtraction con­
stant (i.e., the derivative of the amplitude at the 
threshold) is equivalent, in the absence of phase 
zeros, to fixing the asymptotic behavior. This 
method of fixing the solution is the most conven­
ient in numerical solution of the integral equa­
tions. 

We can now speculate somewhat on the physical 
meaning of the parameters defining the solutions. 

We can, first, establish a correspondence be­
tween these parameters and Lagrangians of the 
type (4.2), (4.3), and (4.4). It may turn out here 
that an important role is played in pion physics 
by interactions which are not renormalizable in 
perturbation theory (see [24] in this connection). 
In other words, the dispersion approach may de-
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cide, through comparison with experiment, the 
existence of non-renormalizable strong interac­
tions. 

Second, it can be assumed that the parameters 
under consideration take into account the influence 
of inelastic processes on the elastic processes in 
the low-energy region. We arrive thereby at the 
possibility of a phenomenological account of in­
elastic processes in the two-particle approxima­
tion scheme. 

In conclusion we note that analysis shows the 
essential properties of the neutral model, to which 
this section was devoted, to be possessed also by 
the scattering of charged pions. The results of an 
investigation of a real charged case will be re­
ported in future articles. 

The authors consider it their pleasant duty to 
thank N. N. Bogolyubov, D. I. Blokhintsev, and 
A. A. Logunov for useful discussions. 
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