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A classical theory is given for the electromagnetic interaction of identical oscillators which 
form a crystal of finite dimensions. General formulas for the radiation field are derived. It 
is shown that in a crystal of large size there is in most directions a large broadening of the 
line (as compared with the line of an isolated oscillator) when there is spontaneous emis
sion of radiation by one of the oscillators. 

1. INTRODUCTION 

THE effect of the interaction of an oscillator with 
other oscillators of the same kind surrounding it 
on the properties of the line omitted by the first 
oscillator has been studied by Dicke [1] and by 
Fain. [2] The case envisaged was that of micro
wave radiation from bunches of molecules, for 
which the distance between molecules is much 
smaller than the wavelength. In this case there 
is a large broadening of the line, proportional to 
the number of oscillators in the bunch. 

The inverse case, in which the wavelength A. 
is less than the distance a between radiating 
systems, has been studied by Podgoretskii and 
Ro1zen [3] ; they considered the cases of two os
cillators (a diatomic molecule) and of a long 
linear chain. The phenomena in such systems 
are obviously connected with the emission of 
radiation by atomic nuclei arranged in a crystal, 
under the conditions in which the Mossbauer effect 
is observed. The presence of a linear chain of 
nuclei causes a shift and broadening of the line 
which depends on the direction of observation and 
is of the order (A./ a) 'Yis, where 'Yis is the line 
width for the isolated nucleus. Only in certain 
directions does the shift reach a large value. 

When it is extended to the case of three
dimensional crystals, however, the method of 
Podgoretskii and Ro!zen [3] leads to complica
tions which hinder the further development of the 
theory. Therefore it is expedient to choose a 
somewhat different way of solving this problem. 
In this paper we shall consider a simple cubic 
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lattice whose sites are at the points rs =as, 
where a is the lattice constant and the compo
nents of the vector s are integers, and shall as
sume that all of the sites are occupied by identical 
dipoles, which we shall think of as composed of 
vibrating particles of charge e and mass I-'· 

If a dipole were isolated, then after excitation 
it would emit a line of frequency Q and width 
'Y +ye =Yis• where 'Ye = (2e2/3J.tc). (Q/c) 2 is 
the partial width caused by the damping owing to 
radiation, and y is the partial width associated 
with loss of energy from the oscillator through 
other channels. In what follows it is assumed that 
the time for passage of light through the crystal 
is much less than the times 1/ye and 1/y. 

2. THE EQUATIONS OF MOTION 

We shall denote the dipole moment at the point 
rs and its Fourier transform by Ps(t) and Ps(w), 
respectively. At the point r the dipole Ps pro
duces an electric field E ( rs; r, t), which we rep
resent by a superposition of plane waves: 

1 \ E (r8 ; r, t) = - (2:rt)• J dkdwG (k, w) 

X {(k p8(w)) k- (: y Ps (w)}/k(r-r5 )-iwt. (1) 

Here the retarded Green's function G = G0 + Gr is 
defined by the formulas 

1 
Go = 4n:P k" _ (wjc)• , Gr = 4n2 i b (k2 - (w/c)2) sign w. 

(2) 

Let the origin of the reference system be inside 
the crystal. At a sufficiently distant point R0 the 
field from the entire crystal is a plane wave prop-
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agated in the direction n0 = Ro/Ro. In the dipole 
approximation the amplitude of this field is given 
by the formula 

E (R 0 , w) =- R;;-1 [k0 [k0 P (k0 , w)IJ eik,R,, (3)* 

where ko = n0w/c and 

(k ) '1 ( ) -ik,r5 P 0 , w = ~ Ps w e . 

The total radiated energy 

Wrad = ~ dn0R~ ~ dtSn0 

( S is the Poynting vector) takes the form 
co 

Wrad = ~ dn0 ~ dwl(n0 , w). 
0 

(4) 

(5) 

In this formula dn0 is an element of solid angle and 

I(no,w) ~ 4:.(_~rP.LP~ (6) 

is the density in angle and frequency of the radia
tion from the crystal; P 1 = P - ( P • no) no. 

To determine the quantity P 1, which is analo
gous to the function F introduced in the paper of 
Podgoretskii and Ro1zen, [a] we use the equations 
of motion of the dipoles. Each dipole is acted on 
by the following forces: a) elastic and dissipative 
forces associated with the proper frequency Q of 
the vibrations of the isolated dipole and the partial 
width y; b) the retarded electric field of all the 
other dipoles; c) its own electric field, of which 
we are concerned with only the part associated 
with Gr in Eq. (1), since the part from Go leads 
to the infinite field mass of the dipole and it is 
assumed that this mass is already included in the 
total mass J.l.; d) the force fs (t) by whose action 
the system is brought into a vibrating state. The 
nature of this force will be considered in more 
detail later. We neglect the magnetic interaction 
of the dipoles, since it brings in only relativistic 
corrections. 

By means of Eq. (1) we get the following equa
tions of motion of the oscillators: 

!l (w 2 + iyw- Q2) Ps (w) =- efs (w) 

+ (;~)"~ dk[e'krs G(k,m){(kP(k,w))k-( ~-{P(k, w>} 

- G0 (k, m) { (kp.(m)) k- ( : /Ps (w)}J. (7) 

Multiplying these equations by exp (- ik0 • rs) and 
summing over all s, we arrive at an integral equa
tion for the determination of P: 

L {w) P (k0, w) = - F (k0, w) + Jt + J2; (8) 

J1 = (2:;3 f.l. ~ dkGr (k, m) S (k- ko) [k [kP (k, w)ll, (9) 

J 2 =-e-' _\' dkGo (k, w) [S (k- ko) {lk [kP (k, w)ll 
(2n)3 f.1. J 

+ (k2 - (w/c)2)P (k, w)}- {k [kP (ko, w)ll 

+ (k2- (w/c)2) P (ko, w)}), (10) 

L ( w) = w2 + iyw - Q2 , 

F (ko, w) = ~ ~ fs (w) e-ik,rs , 
,... s 

S (k- ko) = ~ e'<k--k,) rs . 

(11) 

(12) 

(13) 

The structure factor S is a periodic function in 
the space of the reciprocal lattice, which reduces 
in our case to a cubic lattice with distance 27!/a 
between its nodes. At these nodes the function S 
has sharp maxima (S = N1N2N3, where Ni is the 
number of oscillators in the direction of the i-th 
axis of the crystal). Since the integral of S over 
an elementary cell of the reciprocal lattice is 
(27r/a)3, we can approximate the structure factor 
(13) in the following way: S = N1N2N3 inside a par
allelepiped whose edges are 27r/Nia and whose 
center is at the node (hereafter we shall call this 
parallelepiped the nodal region), and S = 0 out
side this region. Using the fact that the nodal re
gion is small in comparison with the elementary 
cell of the reciprocal lattice and that P ( k, w ) 
is a periodic function of the reciprocal lattice, we 
can replace P (k, w) by P (k0, w) in Eqs. (9) and 
(10). Thus Eq. (8) is an equation for the vector 
P = P (k0, w ), which does not depend on the vari
able of integration k. In what follows we shall 
confine ourselves to crystals of cubical shape 
(Ni = N). 

3. DETERMINATION OF THE DIPOLE MOMENT 
P OF THE SYSTEM 

If we substitute for Gr the expression (2), it 
can be seen from Eq. (9) that the integrand in the 
formula for J 1 differs from zero only at the points 
where the sphere k2 - (w/c )2 = 0 (the sphere of 
propagation ~ ) intersects the nodal regions of 
the reciprocal lattice. To determine them we can 
use a construction analogous to the well known 
Ewald construction [4]: For a given frequency w 
and a given direction of observation n0 we lay off 
from an (arbitrary) node U0 the vector - k0 
=- wn0 /c, and its end determines the center 0 
of the sphere of propagation ~ (see diagram). 

Thus for given w and n0 we can determine the 
nodal regions that contribute to J 1• Denoting these 



RADIATION OF IDENTICAL OSCILLATORS 835 

regions by an index m, we get as the expression 
for J 1 

M 

J1 = iw'Ye 83n: N3 ~ ~ dn (n (Pn) - P), (14) 
m=O(m) 

where (m) is the solid angle subtended at the 
center 0 by the portion of the sphere ~ that in
tersects the m-th nodal region, and M is the 
number of regions intersected. 

For simplicity let us replace the nodal region 
by a sphere of radius p = (3/47T )113 (27T/Na). Be
cause of the smallness of the nodal regions we can 
neglect the variation of the integrand in Eq. (14) 
and replace it by a constant value (P·nm)nm -P, 
which is determined in the following way. In the 
diagram the point 0 is the center of the sphere of 
propagation ~ for the frequency w and direction 
of observation n0• The point Om is the center of 
the sphere of propagation ~m for this same di
rection of observation but for a frequency wm 
such that the sphere passes exactly through the 
node Urn. Thus for each direction n0 and each 
node Urn one determines a direction nm and a 
frequency wm. * 

Introducing the notation om= w- wm, we get 
for the distance Em between the nodal point Urn 
and the sphere of propagation ~ the value 

(15) 

By means of these results the formula (14) can be 
represented with good accuracy in the form 

J 1 = iW'Ye ('!}])\!.( ~ YN ~ g (;) ((Pnm) Dm- P), 
m 

(16) 

where g (x) = (37T/4)(1-x2 ). 

The calculation of J 2 is more complicated. Let 
us divide the entire k space into cells By. (Each 
such cell is essentially a first Brillouin zone.) 

*One can obtain all of the points Om by means of the fol
lowing construction: we take the nodal point U0 as the origin 
and construct the Brillouin zones.~] The points Om are the 
points of intersection of the boundary surfaces of these zones 
and the straight line that passes through the point 0 0 in the 
direction n0 • 

Using Eq. (2) and the properties of the function S, 
we get 

~ dk (S (k- k0)- 1) G0 (k, w) (k2 -( ~ Y) 
(By) 

=4:n:~dk(S(k-k0)-1) =0. (17) 
(By) 

Then J 2 takes the form 

J2 = 2~2~ ~ P ~ dk( S (k- k0)- I) k•~~~}~)•. (18) 
y (By) 

In the calculation of this integral an important 
part is played by the relative positions of the cell 
By and the sphere of propagation ~. Three dif
ferent cases are possible: 1) the sphere of propa
gation k2 - ( w/ c )2 = 0 does not intersect the cell 
Bv; 2) it intersects the cell, but not the nodal re
gion (see diagram, I Em I > p); 3) it intersects 
both the cell and the nodal region (I Em I < p ). It 
can be shown that (owing to the large value of N) 
the main contribution to the expression (18) comes ' 
from the last case. Thus in the formula (18) we 
are to keep only the integrals 

P ~ dk [k [kPII!(k2 - (w/c)2) (19) 

over nodal regions intersected by the sphere ~. 
In these integrals, owing to the antisymmetry of 
the function k2 - ( w/ c )2, the unshaded parts of 
the nodal regions (see diagram ) make practic
ally no contribution. Then on replacing the frac
tion in Eq. (19) by its value at the nodal point, we 
get as an approximate expression for the integral 
(19): 

-~(2n:)a fnm[nmPJJ /(8 m), f(x) =~(1--=~). signx. 
c Na 2p p 2 3 

Using all of these results, we arrive at the 
following approximate expression for J 2 : 

(20) 

J2 ~·· ·- •lYe ( 4~ r s!•(+ y N ~ /( 8 m) ({Pnm) flm- P). 
m p (21) 

The summation is taken over just the same nodal 
points as in Eq. (16). We note further that for 
m = 0 all of the spheres of propagation pass 
through the nodal point U0, and therefore f (Eo I p) 
= o, g(E0 /p) = 37T/4. 

Introducing the notations 

A = (2:n:)-1 (3/4n)'/' ('AJa)2 Nr •• 

¢, = wA (f (em/p) - ig (em/p)), 

we rewrite Eq. (8) for P in the form 

LP =- F- ~ <I>m ((Pnm) nm- P). 
m 

(22) 

(23) 

(24) 
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Multiplying Eq. (24) by 11q (q = 0, 1, 2, ... , M ), we 

836 

(28) 
get a system of linear equations 

( L - ~<Pm) Pnq +~<P"' (nqnm) (Pnm) =- Fnq, (25) 
"" m 

from which we can determine the values of P · nq 
and substitute them in the equation 

(L -~<Pm) P_~_ =-Fj_-~'<Pm(Pnm)nmj_ (26) 
~ m 

for the determination of P 1· Equation (26) follows 
simply from Eqs. (24) and (25). The prime on the 
summation sign means that the value m = 0 is ex
cluded from the sum. The index 1 denotes the 
component perpendicular to the direction n0• 

Thus the investigation of the effect of the crys
tal lattice on the line shape of the emitted light 
reduces to the finding of the nodal regions inter
sected by the sphere of propagation ~ and the 
solution of the system of linear equations (25) 
and (26). 

4. SPONTANEOUS EMISSION IN A CRYSTAL 
OF LARGE SIZE 

As an example of the use of these formulas 
let us consider spontaneous emission. Suppose 
that for times t < 0 all of the oscillators are in 
the unexcited state, with the exception of the one 
located at the point s = 0, which is in an excited 
state with the energy W0 and begins to radiate 
at the time t = 0. We can obtain a classical model 
of such a system by assuming that Ps ( t) = 0 for 
t < 0 for all oscillators and that at the time t = 0 
the oscillator at the point s = 0 receives an in
staneous impulse. To produce this we set fs ( t) 
= Ko 0s o (t), where K = (2t-tW0 ) 1/2• Then the vec
tor F in the formulas (24)- (26) takes the form 

Fsp = (e/Jl) K. (27) 

The use of the retarded Green's function for the 
electric field of the interaction assures that the 
condition Ps ( t) = 0 is satisfied for t < 0. Then 
since for spontaneous emission the direction of 
the exciting force is not determinate, we must 
average Isp(n0, w) over all directions of the 
vector K. 

We assume that the crystal is sufficiently large. 
In this case the dimensions of the nodal regions in 
the reciprocal lattice space are very small and 
consequently it is most probable that the only in
tersection is that with the nodal region m = 0 
(which intersects all the spheres). Thus for most 
directions of observation n0 and frequencies w 
the sum in Eq. (26) reduces to just the term m = 0, 
and 

On using the formula (6) for the averaged density 
of spontaneously emitted radiation, we get 

- Wo [ I w- g)z]-1 t, 
lsp (no, w) = 2n2 1 + \ ---rj2.- fi , 

where W 0 is the excitation energy and r is the 
total line width, given by the formula 

(29) 

(30) 

We obtain the conditions under which we can re
gard the crystal as large in the sense indicated 
above in the following way: if A.« a, then there 
are approximately ( 47T/3) ( w/ c )3 ( a/27T )3 nodal 
points inside the sphere of radius w/c. The num
ber of nodal regions intersected by the sphere is 
determined by the number of points inside a spher
ical shell with the radii w/c ± p, and is conse
quently equal to 87T ( 3/ 47T) 113 (a/A. )2 ( 1/N). For a 
large crystal this quantity must be much smaller 
than unity, and from this we have 

(31) 

If the nonelectromagnetic width y is not very 
large in comparison with Ye• then it can be seen 
from Eqs. (30) and (31) that r » y + Ye· Thus the 
radiation emitted spontaneously from an oscillator 
which is a constituent of a large crystal is in most 
directions a line which retains the Lorentz shape 
but is much broadened in comparison with the line 
emitted by an isolated source. 

The treatment is complicated for the phenomena 
that occur for directions of propagation for which 
the sphere of propagation intersects more than one 
nodal region. The expression for P 1 is now a 
fraction, with a denominator which consists of two 
factors; one is L - ~<I>m, and the other is the de
terminant of the system (25). The properties of 
these factors determine the shape of the line. It 
can be seen at once that the presence of terms 
f (Em I p) leads to a shift of the line, and that the 
presence of the function g (Em I p ) again leads to 
a broadening of this line. Since the determinant 
can be a higher-degree polynomial in the fre
quency w, the line emitted may have a compli
cated multiplet structure depending on the direc
tion of observation, and the line loses its Lorentz 
shape. 

For very small crystals the sphere of propa
gation intersects many nodal regions and it can 
be shown that in this case the crystal has almost 
no effect on the line shape. 
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The scattering of radiation incident on a large 
crystal is treated in greater detail in [SJ. Scatter
ing occurs at the Bragg angle, and the width of the 
scattered line depends on the ratio of the width of 
the incident line to the width r given by Eq. (30), 
in accordance with the general theory of scatter
ing. C7J 

All of our results are derived for an ideal 
single crystal, in which identical oscillators are 
distributed in a strictly periodic crystal lattice. 
For direct comparison with experiment one must 
keep in mind the effect of possible violations of 
these conditions. 

In conclusion the writer takes the opportunity 
to express his gratitude to M. I. Podgoretskii, 
I. M. Frank, F. L. Shapiro, V. N. Efimov, and 
Yu. M. Ostanevich for helpful discussions. 
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