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The imaginary part of the elastic scattering amplitude for neutral pseudoscalar particles is 
calculated in the high-energy limit for small momentum transfers. The resulting expression 
gives a constant cross section at large energies. The distribution of momentum transfers 
has a diffraction maximum in the forward direction. The shape of the maximum is independent 
of the energy. 

1. INTRODUCTION 

THE experimental data show that at high energies 
the elastic scattering of strongly interacting par­
ticles is essentially diffraction scattering. [t] This 
sort of behavior of the amplitude, however, cannot 
be obtained by the usual methods of field theory 
(for example, perturbation theory, Tamm-Dancoff 
method ) . In our opinion this is due to the fact that 
in all of these methods only a finite number of pos­
sible channels in the intermediate states are taken 
into account. 

In this paper we propose a method for deter­
mining the asymptotic behavior of the imaginary 
part of the elastic scattering amplitude which as­
sumes an unlimited number of inelastic channels 
in the intermediate states. At the same time we 
confine ourselves to the consideration of the ex­
change of a minimum number of particles between 
the colliding particles; our theory describes colli­
sions with small momentum transfers. [2Jt We 
shall make our calculations for neutral pseudo­
scalar particles of unit mass. It may be supposed, 
however, that our model can serve for the descrip­
tion of actual pions, since the isotopic spin evi­
dently is not of much importance at high energies. [t] 

From the very method of the calculations it fol­
lows that our results are accurate up to logarith­
mic factors (we shall obtain the solution of the 
equations in the form of an asymptotic power 
series ) , so that we can make no assertion about 
a logarithmic decrease of the total cross section 
( cf. [5]). 

*Staff Member, Central Scientific Research Institute of 
Physics of the Hungarian Academy of Sciences, Budapest. 

tCompare papers by Chew and Frautschi[•.•] which contain 
similar ideas. 

2. THE INTEGRAL EQUATIONS FOR THE 
SPECTRAL FUNCTIONS 

Following Mandelstam [6] we assume that the 
Feynman amplitude for the process with four ex­
ternal lines is described by a single analytic func­
tion in all channels. 

We write the unitarity relation in the "elastic 
approximation" for channel 3 (here and hereafter 
we use Mandelstam's notations [6]) 

A3 (zl, f) = 3; 2 V'---; 4 \IV dz2dzs_ A • (z2 , t) A (z3 , t) 
1t J - k (z1, z2, z3 ) ( 1) 

(the square of the energy in the c.m.s. is t). In 
the spectral region (1, 3) the imaginary part of A3 
(which is by hypothesis also the imaginary part of 
At) is given by the expression 

where z 0 = 1 + S(t-4)-t (we have used here the 
symmetry property of the amplitude). 

We shall regard Eq. (2) as an integral equation 
for At. It must be noted that the form of the equa­
tion does not depend on the asymptotic behavior of 
At (this has already been pointed out by GribovC5J), 
so that we can solve it without any supplementary 
assumptions (subtractions and so on). 

3. THE APPROXIMATE SOLUTION OF THE 
INTEGRAL EQUATION 

Let us consider the asymptotic solution of the 
integral equation (2) for large s and small t. For 
this purpose we apply the Mellin integral transfor-
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mation [S] to the equation. With the definition* 
co 

With the usual definition of the branch of the 
fractional power the t plane in the general case 

~ \' dz 
A1 (u, t) = .l - 2- zu A1 (z, t), 

z, 

we find for real values of u 
r-- co 

I A ( t) _ - 1 v t.- 4 \' \' dz2 dza 
m 1 u, - 4n2 -,-JJ[(z2-1)(z2-1)](1 u);2 

Zo 2 3 

(3) is divided into two parts by two cuts which go to 
the right and left along the real axis from the 
point t = 4. Thus we must use separate defini­
tions of h ( u, t) in the upper and lower half­
planes. If, on the other hand, u is a real integer, 
then there is a single function h ( u, t) analytic in 

xc(a, u)A~(z2,t)Adz3 ,f), (2') the t plane with a cut going to the right along the 
real axis from t = 4. It has a spectral represen-

where 
co 

c (ex, u) =I 2dx (x + cx)u-1. 
.Jfx-1 
1 (4) 

Let us expand c (a, u) and the quantity in square 
brackets in asymptotic power series in z21 and z31• 

Setting c ( 1, u) = c ( u), after an elementary calcula­
tion we find 

Im }L (u, t) = ~n; y' ~ 4 {c (u) JA1 (u, t)J2 

+ (1 - u) (c (u) - c (u- 1)) 

X Re [A~ (u- 2, t) A1 (u, t)l + ... }. (5) 

If we represent the solution of this equation in the 
form of a series 

~ - ~(1) __]_ ~(2) 
AI- Al I Al + ... , ' 

it is found that the main term in the asymptotic 
expansion of ImA1(s, t) is given by the first term, 
which is the solution of the equation 

Thus setting A.m = [h1(u,t) + ih2(u,t)l-1 = h-1, 

where h1 and h2 are real, we get 

1 -.lt-4 
h2 (u, t) = 4n2 v-~-c (u). (6) 

We can determine h1(u, t) by using the analyt­
ical properties of h. Neglecting the left-hand 
"dynamical" cut (which gives a vanishing con­
tribution to the asymptotic behavior), we find 
that A.p> ( u, t) has a "dynamical" cut along the 
real axis of the t plane for t > 4. Besides this, 
A1 can have "kinematical" singularities, caused 
by the fact that we have made the Mellin trans­
formation with respect to z, and not to s. The 
function h ( u, t) has the same cuts as A1, but 
poles at the points where A1 is zero, and con­
versely. 

*Since A, (z,t) = 0 for z < z0 and by hypothesis A, has at 
most a pole at infinity, the Mellin transformation exists in the 
complex plane of u for Re u < u,, where u, is a constant. 

tation of the form 
co 

1-10 \ dl'h2(u, I') ( ) R. ( t) 
h (u, t) = -lt- j (I'_ lo) (t' _ t) + X u + u, , (7) 

4 

where h2 is given by Eq. (6), x(u) is an arbitrary 
function of u, and R ( u, t ) is the sum of the pole 
terms corresponding to the roots of the function 
A1• * In what follows we shall use the simpler for­
mula (7) instead of the general representation; it 
can be shown that this simplification does not af­
fect the final results. 

Thus using Eq. (6) we have (t > 4) 

h (u t) = c (u) {_!_-. I~- 4ln Vi+ V t=4 + i 11 / t- 4} 
' 4n2 n Jl t V t - V t - 4 Jl t 

+'I') (u) (8) 

(where 7J(U) is again an arbitrary function of u), 
and finally 

A ( t) = c (u) I It- 4 { [ c (u) ... It- 4 I Vt + vt=4 
13 u' 4n2 J1 t 4n" J1 t n V t - V t - 4 

+ 'I') (u) r + c4~j y t ~ 4 r ' (9) 

The function c ( u) can be expressed in terms 
of known functions: 

c (u) = n'f,2u-1 r (1 - u)/r (3/2- u). (10) 

In order to get A13 (s, t) it is necessary to in­
vert the Mellin transformation. This is impossible, 
however, as long as we know nothing about the func­
tion 7J(u ). We can get additional information if we 
consider Eq. (9) for 0 < [ ( t- 4 )/t ]112 « 1. Then 

A- c(u) l/'- 4 
13 (u, t) ::::::: 8n• (!] (u))• -,- (9') 

and 
u0+ioo 

1 (' ( 2s)-u~ 
A13 (s, t) = Zni J du 1 + 1_ 4 A 13 (u, t) 

uo+ico 

~ 2~i ~ c'u ( , ~ 1, ru A1a (u, t) (11) 
U 0 -iC:O 

*The function R (u, t) corresponds to ambiguities of the 
type indicated by Castillejo, Dalitz, and Dyson.[7] Hereafter we 
set R (u, t) = 0. 
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For small values of t we use Eq. (9') instead of 
Eq. (9). 

It is known that in order to get the correct be­
havior of the amplitude near the threshold of chan­
nel 3, * near the boundary of the spectral region, 
A13 must behave like [t-t0(s)]-112, where t0(s) 
= 4s/(s -16 ).t 

It can be seen from Eqs. (10), (9'), and (11) 
that this behavior is realized if [ Tj(u)] 2 has a 
simple zero at the point u = -1. Thus 

('l'J (u)) 2 = (1 + u) '1']1 (u) ('1']1 (- 1) == '1']1 =I= 0) 

and for 0 < [(t-4)/t] 112 « 1 we find 

A (s t) ~ - 1 - 5 + ( ) 
13 , 6n2T]l "Vt (t- 4l o s • 

(12) 

One cannot get from Eq. (9) an expression for 
A13 ( s, t ) in closed form. In order to get some 
qualitative information about the behavior of 
A1(s, t) we assume that A13 is given by Eq. (12) 
in the entire range 4 ::s; t < oo • Then we find 

Differential momentum 
-transfer distribution 
[Eq. (14)] 

-t 
1/ 2 4 5 8 10 12 14 16 

where 

ptotic expression for the amplitude. As can be 
seen from the present paper this index is fixed by 
the properties of the amplitude near threshold in 
the crossed channel, and (as was noted in Sec. 1 ) 
the absence of the logarithmic factor is a conse­
quence of the approximations we have made. 

<13) The difficulty in principle with our theory is 
the presence of the unknown functions T/ and R. 

f(t)- 2 In "¥1=4-VI 
- ft(t-4) "Vt-4+Vt (t <0), (14) Setting R = 0, we have been able to determine 

the position of the first zero of Tj(u), but we do 
and by using the optical theorem we get the total 
cross section 

(15) 

4. DISCUSSION OF THE RESULTS 

not know how to determine this function completely. 
The question as to whether oscillating solutions 
of the equations for the spectral function exist is 
still an open one. It is obvious that with the method 
of solution given in this paper it is impossible to 

As can be seen from the formulas (13)-(15), settle the question of a logarithmic decrease or an 
the theory given here describes the two main oscillation of the amplitude. All of these problems 
qualitative results that are known from experi- require further study, and evidently call for the 
ments on the scattering of high-energy particles: development of an essentially new method of solu-
the constant total cross section and the diffraction tion of the nonlinear equation (2). 
character of the elastic scattering, the shape of The writer regards it as his pleasant duty to 
which does not depend on the energy (see figure). express his gratitude to V. S. Barashenkov, Yu. 

For large values of -t the function f(t) falls Vol'f, A. V. Efremov, Professor Chu Hung-Ylian, 
off too slowly [as (- t )-1 ln (- t )] , but strictly and Professor K. A. Ter-Martirosyan for valuable 
speaking our results are not applicable in this region. discussions. 

There are still some remarks to be made abou~ 1 v. S. Barashenkov, UFN 72, 53 (1960), Soviet 
the relation of our results to the work of Gribov. [ J Phys. Uspekhi 3, 689 (1961). 
In Gribov's paper it was shown that a pure power- 2 L. B. Okun' and I. Ya. Pomeranchuk, JETP 36, 
law behavior of the amplitude at infinity is in con- 300 (1959), Soviet Phys. JETP 9, 207 (1959). 
tradiction with the generalized unitarity relationt 3G. F. Chew and S.C. Frautschi, Phys. Rev. 
[our Eq. (2)]. At the same time Gribov makes no Letters 5, 580 (1960). 
assertion about the power-law index in the asym- 4G. F. Chew and s. c. Frautschi, Preprint 

*That is, in order for the phases to satisfy 81"' atk 21 + 1 for 
infinitely small kinetic energy. This is physically equivalent 
to requiring that at small energies the interaction have a finite 
radius of action. 

tone can convince oneself of this either by direct calcu­
lation or by reference to the results obtained from perturbation 
theory ( cf. Mandelstam[ 8 l). 

~But see[•]. Gribov's results are incorrect if the spectral 
function oscillates at infinity. 
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6 S. Mandelstam, Phys. Rev. 112, 1344 (1958). 
7 Castillejo, Dalitz, and Dyson, Phys. Rev. 101, 

453 (1956). 
8s. Mandelstam, Phys. Rev. 115, 1741 (1959). 
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